Syndicate content

Climate Change

Urban jungles in jeopardy

Ivo Germann's picture
Why the world’s cities are at risk – and what we can do to make them more resilient



We may not know exactly what the world will look like in two decades, but we know this: it is going to be a world of cities.
 
The global population is becoming increasingly urban, and at an astonishing rate. Each year, urban areas are growing by an average of more than 75 million people – more than the population of the world’s 85 smallest countries combined.
 
For the world’s economy, this is great news, since cities produce 80 percent of global GDP, despite currently being home to only 55 percent of the population. But it is a problem for urban infrastructure, which can’t keep up with such fast-paced growth. As a result, cities, already vulnerable, are becoming increasingly susceptible to natural disasters – from flooding and landslides that can decimate informal housing settlements, to earthquakes that can devastate power grids and water systems.
 
These risks could be disastrous for the urban poor, 881 million of whom currently live in slums (up 28 percent since 2000). And climate change – which is increasing the intensity and frequency of natural disasters – will only exacerbate the problem. For this reason, multilateral and government institutions now see resilience and climate adaptation as integral pillars of development.
 
The Swiss State Secretariat for Economic Affairs (SECO), for example, considers low-emission and climate-resilient economies to be key to global competitiveness. A recent report by the World Bank and the Global Facility for Disaster Reduction and Recovery (GFDRR) found that climate change may force up to 77 million urban residents into poverty by 2030 – unless we take action to improve the resilience of cities around the world.

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Are roads and highways the Achilles Heel of Brazil?

Frederico Pedroso's picture
Also available in: Português
Photo: Ricardo Giaviti/Flickr
Over the past three years and a half, our team has been working on a transport project with the state of São Paulo in Brazil. The project involves a lot of traveling, including frequent commutes between the World Bank office in Brasilia and the State Department of Transport in São Paulo (DER-SP)—a journey that is estimated to take 2 hours and 40 minutes. This includes the time to drive from the World Bank office to Brasilia Airport, flight time, and commuting from São Paulo’s Congonhas Airport to the State Department of Transport.
 
Let’s say that, on a typical Wednesday, the team needs to attend a meeting in São Paulo. To ensure we can make it on time, we plan our day carefully, book our flights and define the right time to leave the office in Brasilia. With a plan in place, we leave the office at 10:00 am and head to Brasilia Airport. The first leg of the trip takes 35 minutes and we manage to arrive early for our 11:00 am flight, which, unfortunately, is delayed by 20 minutes. We land in São Paulo, quickly get out of the terminal, and manage to hop on a taxi at 1:20pm… not bad! We are now on the last leg of our journey, a mere 14-kilometer drive between Congonhas Airport and the meeting place, which is supposed to take only 20 minutes. However, there is a short thunderstorm that floods the city and closes off key streets. This single event leads to complete traffic chaos along the way, and our planned 20-minute transfer from the airport turns into a 1-hour-and-15-minute ordeal. These traffic disruptions have a serious impact on our meeting as well, as some Department of Transport staff cannot join and some items of the agenda cannot be discussed.
 
This incident may seem anecdotal, but it is a good illustration of our extreme dependency on transport systems and the weaknesses associated with it. Because transport is so critical to our social and economic lives, it is extremely important to understand, anticipate, and minimize the different types of risks that may impact transport systems.

Partners in Prediction: How international collaboration has changed the landscape of hydromet

Vladimir Tsirkunov's picture

© Flickr

Intense drought can devastate a country. Severe flooding can be catastrophic. Dealing with both at the same time? That’s just another day for too many countries around the world that struggle to accurately predict weather- and climate-related disasters while simultaneously dealing with their effects.
 
Today, World Meteorological Day recognizes the benefits of accurate forecasting and improved delivery of hydromet services for the safety of lives and economies. Hydrological and meteorological (or “hydromet”) hazards – weather, water, and climate extremes – are responsible for 90 percent of total disaster losses worldwide. Getting accurate, timely predictions of these hazards into the hands of decision-makers and the public can save lives, while generating at least three dollars’ worth of socio-economic benefits for every one dollar invested in weather and climate services – a win-win. But less than 15 years ago, even the small amount of hydromet investment that existed was fragmented, with little hope of producing sustainable results. 

The “plastic bridge”: a low-cost, high-impact solution to address climate risk

Oliver Whalley's picture
Also available in: Français
Photo: Anthony Doudt/Flickr
Bridges are critical links in the transport network. In their position across waterways, they are exposed to the full effects of flooding and landslides, and are often the first pieces of infrastructure to be damaged in the event of a disaster. They also typically take weeks or months to repair.  Besides causing expensive damage to the infrastructure itself, disruptions in connectivity also have a much broader impact on economic productivity and people’s ability to access essential services. As many places are expected to witness more intense and frequent rainfall as a result of climate change, the risk to bridges will only worsen: more rainfall will lead to bigger river flows and more damage to bridges, especially those designed to handle smaller storms.

At each end of a bridges is a structure which supports the weight of the deck. These are known as abutments, and they are often the first part of the bridge to fail. Blockage of the main channel by debris can cause water to look for the path of least resistance around the sides of the bridges, thus placing the abutments at risk.

Traditional bridge construction requires the installation of piles for the foundations of abutments—a lengthy and expensive process that involves specialist materials, skills and equipment.

But there is another promising solution: Geosynthetic Reinforced Soil (GRS) abutments. These allow for rapid and resilient construction of bridge abutments using locally available materials, without specialized equipment. With GRS, bridges can be constructed in as little as five days (Von Handorf, 2013) and at a cost 30-50% lower than traditional approaches (Tonkin and Taylor, 2016) .

GRS abutments are based on ‘geogrids,’ a high density mesh made out of polyethylene (plastic). Layers of soil and geogrid are combined to create a solid foundation for the bridge deck. Construction can be completed with basic earthmoving and compaction equipment, and a range of local fill materials can be used with guidance from geotechnical specialists.

Women, cities, and opportunity: Making the case for secure land rights

Klaus Deininger's picture

Also available in: Français 

Land and property lie at the center of many of today’s pressing development challenges. Consider that at most 10% of land in rural Africa is reliably registered. At this week‘s annual Land and Poverty Conference here at the World Bank, we will hear how this vast gap in documentation of land gap blunts access to opportunities and key services for millions of the world’s poorest people, contributes to gender inequality, and undermines environmental sustainability.

In Brazil, electricity meters transform lives and enlighten businesses

Christophe de Gouvello's picture

Buyers agreed to destroy obsolete equipment to prevent its reuse in the power distribution network

What do electricity meters and mobile phones have in common? Answer: both are present in millions of Brazilian homes and both become electronic waste as soon as they are discarded. Though they do not contain heavy metals, their materials pose risks from the moment they are discarded in waste dumps or landfills.
 

Sovereign wealth funds: the catalyst for climate finance?

Juergen Braunstein's picture



Following the Paris deal on international climate change, governments are beginning to explore new financing mechanisms for investing in the growing low carbon economy. Over the next decade sovereign wealth funds (SWFs) could become an important game changer in green investing. Recognizing the untapped potential of SWFs, two key questions emerge: how can SWFs increase their exposure to green asset classes? And what are the constraints?
 
Investors and financial institutions are becoming increasingly aware of the risks associated with fossil fuel projects and are showing growing interest in green bonds and other financing tools that facilitate investment in low-carbon energy solutions.
 
Being patient investors, with longer term investment horizons than many others in the financial services sector, SWFs could become catalysts for implementing the December 2015 Paris Climate Agreement. In the November 2016 annual meeting of the International Forum of Sovereign Wealth Funds in Auckland, participants highlighted that SWFs are particularly well-positioned to become trailblazers in green investment. The majority of members are oil-based SWFs which are looking to economic diversification of their finite carbon wealth into industries and sectors that would yield broader societal, economic and financial benefits.

Climate change is forcing us to reinvent rural transport for the better

Ashok Kumar's picture
Photo: Ravisankar Pandian/Flickr
India is in the midst of implementing PMGSY, a $35-billion national level Rural Road Program designed to provide basic road access to rural communities. The World Bank is supporting PMGSY through a series of lending operations ($1.8 billion in Bank funding) and significant knowledge support. A key element of the Bank’s support has been to integrate a “climate and green growth lens” into these efforts in cost-effective ways.

How is “green growth” benefiting India? One important dimension of that effort has been  the use of environmentally optimized road designs, which has resulted in quality infrastructure using local and marginal materials, providing both economic and environmental benefits. Where available, sand deposits accumulated from frequent floods, industrial by-products, and certain types of plastic, mining, and construction waste have been used to good effect. Designs that use such materials have been about 25% cheaper to build, on average, than those requiring commonly used rock aggregates. The environmental benefits of using the above materials, in terms of addressing the big disposal problem of such materials and reducing the consumption of scarce natural stone aggregates, are as significant as the cost savings.

A second “green growth” dimension has been focusing investments on the “core” network, i.e. the network India needs to develop in order to provide access to all villages. Relative to a total rural road network of about 3.3 million kilometers, the core network that falls under PMGSY stretches over only 1.1 million kilometers. Prioritizing construction and maintenance on those critical road links will bring down costs as well as the associated carbon footprint.

Campaign Art: By 2050 more plastic in the oceans than fish?

Darejani Markozashvili's picture
People, Spaces, Deliberation bloggers present exceptional campaign art from all over the world. These examples are meant to inspire
 
Did you know that 60-90% of marine litter is plastic?

Did you know that each year about 8 million tons of plastic ends up in the oceans?

Did you know that each year, over 4 billion coffee cups end up in landfills?

Did you know that up to 51 trillion micro plastic particles are already in our oceans?

Did you know that by 2050, an estimated 99% of seabirds will have ingested plastic?

Why do these numbers matter? With increased human activity both on land and seas, and unsustainable production and consumption habits, our oceans and other world’s bodies of water are getting more and more polluted. These numbers matter, because not only are the oceans a source of protein to millions of people worldwide, they also produce more than half of the oxygen in the atmosphere. According to some estimates by year 2050 oceans will be populated more by plastic than fish, if the current trend of plastic dumping continues. This is unacceptable.

In response to this global environmental problem, this month, UNEP launched an international campaign called “CleanSeas.” Committed to eliminate major sources of marine littering, waste created by humans that has been discharged into the coastal or marine environment, by the year 2022, UNEP is urging governments, private sector, and consumers to reduce production and usage of micro plastics and single-use plastics.

Pages