Syndicate content

sustainable mobility

Preparing transport for an uncertain climate future: I don’t have a crystal ball, but I have a computer

Julie Rozenberg's picture
Photo: Alex Wynter/Flickr
In 2015, severe floods washed away a series of bridges in Mozambique’s Nampula province, leaving several small villages completely isolated. Breslau, a local engineer and one of our counterparts, knew that rebuilding those bridges would take months. Breslau took his motorbike and drove the length of the river to look for other roads, trails, or paths to help the villagers avoid months of isolation. He eventually found an old earth path that was quickly cleaned up and restored… After a few days, the villagers had an alternative to the destroyed bridge, reconnecting them to the rest of the network and the country.

What happened in the Nampula province perfectly illustrates how a single weather event can quickly paralyze transport connections, bringing communities and economies to a screeching halt. There are many more examples of this phenomenon, which affects both developing and developed countries. On March 30th, a section of the I-85 interstate collapsed in Atlanta, causing schools to close and forcing many people to work from home. In Peru, food prices increase in Lima when the carretera central is disrupted by landslides because agricultural products can’t be brought to market.

How can we help countries improve the resilience of their transport networks in a context of scarce resources and rising climate uncertainty?

When cities forget about pedestrians, big data and technology can serve as a friendly reminder

Bianca Bianchi Alves's picture
Photo: Lazyllama/Shutterstock
Paraisópolis, a nationally famous slum area in São Paulo, Brazil, is one of those bustling communities where everything happens. Despite being located in the middle of the city, it managed, unlike other poor slum areas, not to be reallocated to make room for more expensive housing or public infrastructure. The area boasts vibrant community life, with more than 40 active NGOs covering issues that range from waste management and health to ballet and cooking. Recently, the area also benefited from several community upgrading programs. In particular, investments in local roads have facilitated truck access to the community, bringing in large and small retailers, and generating lively economic activity along with job opportunities for local residents.

As we continue our efforts to increase awareness around on-foot mobility (see previous blog), today, I would like to highlight a project we developed for Paraisópolis.

While most of the community has access to basic services and there are opportunities for professional enhancement and cultural activities, mobility and access to jobs remains a challenge. The current inequitable distribution of public space in the community prioritizes private cars versus transit and non-motorized transport. This contributes to severe congestion and reduced transit travel speed; buses had to be reallocated to neighboring streets because they were always stuck in traffic. Pedestrians are always at danger of being hit by a vehicle or falling on the barely-existent sidewalks, and emergency vehicles have no chance of getting into the community if needed. For example, in the last year there were three fire events—a common hazard in such communities—affecting hundreds of homes, yet the emergency trucks could not come in to respond on time because of cars blocking the passage.

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Beyond ribbon-cutting: measuring the real impact of transport projects

Nancy Vandycke's picture
Photo: World Bank/Flickr
Development practitioners often rely on Monitoring and Evaluation (M&E) performance indicators to assess the results of a transport project. Collecting indicators before, during, and after a project allows us to gain insights about project execution and project outputs, which can help us, for example, measure changes in travel time or Bus Rapid Transit (BRT) system ridership. While this approach is important, well anchored into project design, and quite practical, it is not intended to evaluate “impact”. Observed changes in outcomes cannot be attributed to the project: many other external factors, such as economic conditions, interrelated policies or projects, or seasonal trends, also come into play. In other words, a descriptive approach fails to establish causality between a project or intervention and subsequent outcomes such as changes in income, labor markets, quality of life, or market efficiency.

To overcome the limitations of traditional M&E, the development community is increasingly turning to impact evaluation, an alternative approach whose methods more directly address the issue of causality. In that context, the World Bank’s transport experts have partnered with colleagues from the Development Impact Evaluation (DIME) team to rethink the way the impact of transport is measured. Two years ago, with support from the UK Department for International Development (DFID), a transport-dedicated impact evaluation program was launched: “IE Connect for Impact”. Now, impact evaluation is being implemented on 10 projects, covering rural roads, urban mobility, transport corridor development, and road safety. More projects will be selected toward the end of the year, as part of Phase II of the program.

The expected benefits are clear: informing project delivery during design and implementation, documenting the effects of policy and investment interventions, and prioritizing and filling knowledge gaps in the sector. Despite these significant benefits, transport accounts for less than 1% of all impact evaluation work —a very low proportion compared to the weight of other sectors such as in health (65% of all published impact evaluations), education (23%), agriculture and rural development (10%), or water (4%).

Are roads and highways the Achilles Heel of Brazil?

Frederico Pedroso's picture
Also available in: Português
Photo: Ricardo Giaviti/Flickr
Over the past three years and a half, our team has been working on a transport project with the state of São Paulo in Brazil. The project involves a lot of traveling, including frequent commutes between the World Bank office in Brasilia and the State Department of Transport in São Paulo (DER-SP)—a journey that is estimated to take 2 hours and 40 minutes. This includes the time to drive from the World Bank office to Brasilia Airport, flight time, and commuting from São Paulo’s Congonhas Airport to the State Department of Transport.
 
Let’s say that, on a typical Wednesday, the team needs to attend a meeting in São Paulo. To ensure we can make it on time, we plan our day carefully, book our flights and define the right time to leave the office in Brasilia. With a plan in place, we leave the office at 10:00 am and head to Brasilia Airport. The first leg of the trip takes 35 minutes and we manage to arrive early for our 11:00 am flight, which, unfortunately, is delayed by 20 minutes. We land in São Paulo, quickly get out of the terminal, and manage to hop on a taxi at 1:20pm… not bad! We are now on the last leg of our journey, a mere 14-kilometer drive between Congonhas Airport and the meeting place, which is supposed to take only 20 minutes. However, there is a short thunderstorm that floods the city and closes off key streets. This single event leads to complete traffic chaos along the way, and our planned 20-minute transfer from the airport turns into a 1-hour-and-15-minute ordeal. These traffic disruptions have a serious impact on our meeting as well, as some Department of Transport staff cannot join and some items of the agenda cannot be discussed.
 
This incident may seem anecdotal, but it is a good illustration of our extreme dependency on transport systems and the weaknesses associated with it. Because transport is so critical to our social and economic lives, it is extremely important to understand, anticipate, and minimize the different types of risks that may impact transport systems.

Climate change is forcing us to reinvent rural transport for the better

Ashok Kumar's picture
Photo: Ravisankar Pandian/Flickr
India is in the midst of implementing PMGSY, a $35-billion national level Rural Road Program designed to provide basic road access to rural communities. The World Bank is supporting PMGSY through a series of lending operations ($1.8 billion in Bank funding) and significant knowledge support. A key element of the Bank’s support has been to integrate a “climate and green growth lens” into these efforts in cost-effective ways.

How is “green growth” benefiting India? One important dimension of that effort has been  the use of environmentally optimized road designs, which has resulted in quality infrastructure using local and marginal materials, providing both economic and environmental benefits. Where available, sand deposits accumulated from frequent floods, industrial by-products, and certain types of plastic, mining, and construction waste have been used to good effect. Designs that use such materials have been about 25% cheaper to build, on average, than those requiring commonly used rock aggregates. The environmental benefits of using the above materials, in terms of addressing the big disposal problem of such materials and reducing the consumption of scarce natural stone aggregates, are as significant as the cost savings.

A second “green growth” dimension has been focusing investments on the “core” network, i.e. the network India needs to develop in order to provide access to all villages. Relative to a total rural road network of about 3.3 million kilometers, the core network that falls under PMGSY stretches over only 1.1 million kilometers. Prioritizing construction and maintenance on those critical road links will bring down costs as well as the associated carbon footprint.

How have recent bus reforms changed accessibility in Bogotá?

Camila Rodriguez's picture
Photo: Galo Naranjo/Flickr
Bogotá has received a lot of attention for its Bus Rapid Transit (BRT) system, known as Transmilenio. Today, many cities are looking to replicate the Transmilenio experience, and an extensive body of research has documented the impact of the system on users and on the city as a whole, highlighting benefits such as: significant travel time savings; more affordable commuting options, particularly for low-income users now pay a single fare for their trips; and an overall decrease in congestion, pollution, and accidents.
 
However, much less is known about the impact of the Sistema Integrado de Transporte (SITP), a more recent reform to modernize and integrate all of the city’s bus services, eliminate the old, sometimes unsafe traditional buses, and put an end to the guerra del centavo—a phenomenon whereby drivers aggressively compete for passengers at the expense of everyone’s safety. The reform introduced a number of sweeping changes:
  • The multitude of small private operators were required to form companies and to formalize their drivers and maintenance personnel
  • Services were contractualized via concession arrangements
  • The overall number of buses on the roads was reduced
  • Bus routes were reorganized
  • Old buses were replaced with a more modern fleet
  • Cash payment gave way to a smartcard system
  • The city applied stricter quality control, regulation and enforcement.
To implement this model, Bogotá opted for a gradual roll-out of the SITP, as opposed to the “Big Bang” approach followed in other cities like Santiago de Chile.

Is it too early to agree on SDG indicators for transport?

Muneeza Mehmood Alam's picture

 
In March, the international community of statisticians will gather in New York and Ottawa to discuss and agree on a global indicator framework for the 17 Sustainable Development Goals and the 169 targets of the “2030 Agenda for Sustainable Development”. The task at hand is ambitious. In 2015, heads of state from around the world committed to do nothing less than “transform our world”. Monitoring progress towards this ambition is essential, but technically and politically challenging: it will require endorsement from all UN Member States on how to measure progress. In March, it will be the second attempt at getting this endorsement.

Why is it important? “What gets measured, gets done”. Measuring progress is essential for transparency and accountability. It allows us to understand our accomplishments and failures along the way, and identify corrective measures and actions—in short, it allows us to get things done.

What is the issue? Politically, the SDG process has been country led. This means that countries—and not international agencies, as in the case of the Millennium Development Goals—have guided the whole SDG process, including leading discussions and the selection of goals, targets and indicators.   Technically, the development of a robust and high-quality indicator framework is highly complex: the indicator should align closely with each target, have an agreed-upon methodology, and have global coverage. In reality, many indicators do not. For example, the indicator proposed to measure the 11.2 SDG target (“By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all”) is the “proportion of population that has convenient access to public transport”. Data is not yet available for this indicator. Additional indicators may be needed to cover all aspects of the target.

From Nairobi to Manila, mobile phones are changing the lives of bus riders

Shomik Mehndiratta's picture

Every day around the world, millions of people rely on buses to get around. In many cities, these services carry the bulk of urban trips, especially in Africa and Latin America. They are known by many different names—matatus, dalalas, minibus taxis, colectivos, diablos rojos, micros, etc.—but all have one thing in common: they are either hardly regulated… or not regulated at all. Although buses play a critical role in the daily life of many urban dwellers, there are a variety of complaints that have spurred calls for improvement and reform. For users, the lack of information and visibility on services has been a fundamental concern. Having to pay separately for each ride disproportionately hurts the poor traveling from the periphery, who often have to catch several buses to reach the center. The vehicles are old and sometimes unsafe. Adding to concerns about safety, bus drivers compete with each other for passengers in what is known in Latin America as the “guerra del centavo” or “penny war”. Non-users, planners, and city authorities also complain about the pollution and accidents caused by these drivers as well as the congestion generated by the ‘wall of buses’ on key city arterials.
 
To address these issues, cities have attempted to reform these informal bus services by setting up concession contracts and bring multiple bus owners and operators together under formal companies (refer to the attached note: Bus Reform in Developing Countries—Reflections on the Experience thus Far). But even though some of them have made great strides in revamping their bus services (particularly by implementing Bus Rapid Transit systems), the overall success of these attempts has been limited, and unregulated buses remain, in countless cities, a vital component of the urban transport ecosystem.
 
However, we are now witnessing a different, more organic kind of change that is disrupting the world of informal buses using ubiquitous cheap sensors and mobile technology.

Traffic jams, pollution, road crashes: Can technology end the woes of urban transport?

Shomik Mehndiratta's picture
Photo: Noeltock/Flickr
Will technology be the savior of urban mobility?
 
Urbanization and rising incomes have been driving rapid motorization across Asia, Africa, and Latin America. While cities are currently home to 50% of the global population, that proportion is expected to increase to 70% by 2050. At the same time, business-as-usual trends suggest we could see an additional 1 billon cars by 2050, most of which will have to squeeze into the already crowded streets of Indian, Chinese, and African cities.
 
If no action is taken, these cars threaten literally to choke tomorrow’s cities, bringing with them a host of negative consequences that would seriously undermine the overall benefits of urbanization: lowered productivity from constant congestion; local pollution and rising carbon emissions; road traffic deaths and injuries; rising inequity and social division.
 
However, after a century of relatively small incremental progress, disruptive changes in the world of automotive technology could have fundamental implications for sustainability.
 
What are these megatrends, and how can they reshape the future of urban mobility?

Pages