Is predicted data a viable alternative to real data?
The primary motivation for predicting data in economics, health sciences, and other disciplines has been to deal with various forms of missing data problems. However, one could also make a case for adopting prediction methods to obtain more cost-efficient estimates of welfare indicators when it is expensive to observe the outcome of interest (in comparison with its predictors). For example, consider the estimation of poverty and malnutrition rates. The conventional estimators in this case require household- and individual-level data on expenditures and health outcomes. Collecting this data is generally costly. It is not uncommon that in developing countries, where poverty and poor health outcomes are most pressing, statistical agencies do not have the budget that is needed to collect these data frequently. As a result, official estimates of poverty and malnutrition are often outdated: For example, across the 26 low-income countries in Sub-Saharan Africa over the period between 1993 and 2012, the national poverty rate and prevalence of stunting for children under five are on average reported only once every five years and once every ten years in the World Development Indicators.