#EndEnergyPoverty
Syndicate content

Blogs

From slums to neighborhoods: How energy efficiency can transform the lives of the urban poor

Martina Bosi's picture

Villa 31, an iconic urban settlement in the heart of Buenos Aires, is home to about 43,000 of the city’s poor. In Argentina, paradoxically, urban slums are called ‘villas’ – a word usually tied with luxury in many parts of the world.
 

Clean Cooking in Bangladesh: the experience from one million households

Amit Jain's picture
1 / 8
2 / 8
3 / 8
4 / 8
5 / 8
6 / 8
7 / 8
8 / 8

It was a dark, rainy evening when we first met Mamta in Bangladesh. She was huddled over a choolah (firewood burning cook stove), preparing rice and daal (lentils) for her three children. Smoke enveloped the room, which also doubles as the family’s bedroom when it rains. And her daughter asked: Why do I get tears in my eyes whenever you cook inside the room? ”
 
While some countries are far ahead on the energy access curve, like Australia, which is mulling ways to install mega battery packs in 100 days, others like Bangladesh are still grappling with the fundamental cookstove challenge and the right answer to Mamta’s daughter questions.
 
Getting to clean cooking universally, quite frankly, is one of the biggest challenges the global energy community has ever faced.

Riding the data revolution wave toward sustainable energy for all

Yann Tanvez's picture
Today, more than 1 billion people still live without access to energy, despite the multiplication of efforts from public, private and non-governmental actors. At the same time, global efforts abound to keep global warming under 2 degree Celsius, in accordance with the historic Paris Climate Agreement.

The explicit need of the hour is a significant increase of annual investments in energy access, renewables and energy efficiency – in the hundreds of billions of dollars’ range. So what role does open data play in such a scenario, you may wonder. 

Need solar resource data or maps? We've got an app for that

Oliver Knight's picture


Last month the World Bank launched a new Global Solar Atlas: a free, online tool that lets you zoom into areas anywhere in the world in great detail (1km resolution), and with downloadable poster maps for all developing countries. This new interactive tool is welcome news for anyone – policymaker or commercial developer – who has ever looked for solar maps or resource data from the cluttered and sometimes confusing array of public resources available
 
For this new atlas to have a greater impact, the following needs to happen.   
 
First, we need to cut down on the duplication and often wasted resources associated with national mapping projects. For example, before the Global Solar Atlas was launched, it cost $100,000-150,000 to commission a solar resource map for an average-sized country, and the work took around six months to complete. But with the Atlas,  we have completed this task for  all developing countries at a fraction of the cost, allowing funding to be channeled into higher value activities such as geospatial planning to identify renewable energy zones, or ground-based measurement campaigns to help further improve the solar resource models on which the results are based. This new tool could be an invaluable asset for governments, development agencies, and foundations so that they no longer commission country-based mapping efforts that are, in many cases, costly and may end up duplicating what the Atlas offers already.
 
Second, we need to continuously improve the data behind the Atlas, and other commercially available solar resource models, by investing in ground-based solar radiation measurement stations, with the first two years of data compiled and available in the public domain. But this is easier said than done. There are major gaps in the current measurement data network, especially in developing countries, and this adds to the uncertainty of the solar data provided. In turn, that increases developer risk and ultimately costs. Unfortunately, it is very easy to commission a poor quality measurement campaign, or to leave out key bits of data that are needed for eventual analysis. So adopting a universal set of standards is vital.
 
Third, public research institutes that have previously carried out solar resource assessments need to take a hard look at what value they add in this area. Over the last five years a number of commercial providers of solar resource data have emerged that maintain standing solar resource models, and work continuously to improve and update their solar data. This is an excellent example of public incubation and research being translated into successful start-ups, and should be celebrated. But the originators now need to move on to new frontiers of research to avoid crowding out commercial providers, and to help generate the next generation of methodologies and tools.

The story behind RISE numbers

Yao Zhao's picture

You’d think the most important thing about putting together a global scorecard is, well, the scores of course.

My experience working on RISE – Regulatory Indicators for Sustainable Energy – taught me that it takes a lot more than just data to deliver a one-of-a-kind report.

But hang on. What’s RISE, you ask? RISE is a groundbreaking tool that helps assess government support for sustainable energy investments, which are critical to achieve sustainable energy goals by 2030.

Nothing to this scale has been done before. RISE covers 111 countries, which account for over 90 percent of global population and energy consumption.

My very first time getting familiar with this data was when I worked on the pilot version of RISE . We had decided the best way to get people to understand this endeavor was to get them to play a “Who Wants to be a Millionaire” style game, but with energy access, renewable energy and energy efficiency data. What an eye opener. At that time, I thought the breadth of the pilot project -- 28 indicators, 85 sub-indicators and a 17-country coverage – was impressive.

Sun goes beyond turning on light bulbs in Tanzania

Sunita Dubey's picture
Elisha Thomas Laizer owns a small stationery store that provides photocopying and printing services in Kitumbeine, a Maasai village 150 km (93http://www.esmap.org mi) from the Tanzanian city of Arusha.

Kitumbeine is also 40 km (25 mi) from the nearest electricity grid.

But that hasn’t stopped Elisha. That’s because his store is actually inside a 16 KW mini grid container, under the shade of 60 solar panels. While such easy access to solar power has helped his business tremendously, it has also gifted him with a chance to learn to operate and maintain these mini grids. Consequently, he now acts as a liaison between his community and the solar company that helps set up these grids in remote Tanzanian villages that are starved for electricity.

Elisha’s story is a great example of how the sun paves the way for way more than just turning on a light bulb.

Gandhigiri can make solar work for India

Amit Jain's picture

In many ways, Indian leader Mahatma Gandhi was an early environmentalist. He believed in a self-sustaining life, walked everywhere, and even spun his own cotton yarn. If he were alive, he would been a huge supporter of India’s efforts to use its abundant sunshine to generate clean, sustainable energy.
  
Today, India’s climate change mitigation strategy bears the unmistakable stamp of the father of the nation. It has a goal of achieving a five-fold jump in renewable energy to 175 GW by 2022, the bulk of which - 100 GW - is expected to come from solar and 40% of that from rooftop solar alone.

Not surprisingly, this target was subject to much skepticism initially. Forget the quantum leap to 175 GW in seven years. At the time of the announcement, India was far from meeting its original target of 20 GW, because even just a few years ago, commercial banks considered solar a risky and ‘non-bankable’ technology.

Powering Sub-Saharan Africa – A fresh take on an old problem

Masami Kojima's picture
Man looking at electricity meters in Bamako, Mali 
Pic: Aarthi Sivaraman/World Bank

“If there is one thing that could really help my business, it would be reliable power supply,” said David, a small business owner in Lagos, on my recent trip to Nigeria.
“I agree. If only …,” echoed another.

And not without reason.

Africa lags every other region in the world when it comes to electricity access for its people. Only one in three Sub-Saharan Africans has access to electricity. That’s less than half of the rate of access in South Asia, the region with the second-lowest access rate. If we were to measure access to “reliable” electricity, then those numbers would be even more dismal.

Worryingly, the rate of access has been increasing at a mere 5 percentage points every decade, against population growth of 29 percent. If something is not done to dramatically change this trend, Africa will not see universal access to electricity in the 21st century. This is a seriously worrying prospect as the world races toward a 2030 deadline of universal access to electricity.

The target of achieving universal access by 2030 by the U.N.’s Sustainable Energy for All initiative and the billions of dollars committed by the U.S. government’s Power Africa plan underline the urgency of the situation. As a reminder, more than 1 billion people around the world still live without access to electricity and 600 million of those live in Africa.

So, are Africa’s utilities financially equipped to respond to this call?

How do we take energy access to the uprooted?

Liliana Elisabeta Benitez's picture
Also available in: Español
Aerial view of Al Zaatari Refugee Camp, Jordan. Photo: State Dept

You shall leave everything you love most; this is the arrow that the bow of exile shoots first,” wrote Dante in The Divine Comedy.
 
For most of the estimated 65 million displaced people around the world, every day is a struggle. Having survived a tumultuous journey in the hope of beginning anew, how does a displaced person begin to heal and plant roots in a strange new land?

Pages