Attend Spring Meetings on Development topics from Apr 17-21. Comment and engage with experts. Calendar of Events


#EndEnergyPoverty
Syndicate content

Blogs

Off-grid bringing power to millions

Riccardo Puliti's picture

Picture an island in Bangladesh that is so remote that there is no way the traditional electricity could reach it. Not now, and probably not anytime soon. That was the situation in Monpura just a few years ago – but not today.

Today, Monpura is thriving, thanks to solar power. Markets are abuzz, households can power TVs, fans and even refrigerators, and streets are lit up at night. In fact, solar home systems have helped take electricity to more than 20 million people in rural Bangladesh.

The off-grid solar market, quite simply, has changed lives.

Solar Mini Grids Put Nigeria on Path to Energy for All by 2030

Sunita Chikkatur Dubey's picture
Bisanti villagers in Nigeria appreciating first time access to reliable, affordable and sustainable electricity through the solar mini grid system. Photo credit: Simi Vijay Photography©/for the World Bank
Who would have imagined an internship with an oil company in the Niger Delta could lead to a solar startup? For Ifeanyi Orajaka, Chuka Eze and Ikechukwu Onyekwelu, it turned out to be just that.

In their 20s, they are the co-founders of Green Village Electricity (GVE) Projects Limited —a company that has been providing electricity access to remote and rural parts of Nigeria through solar photo voltaic (PV) solar mini grids since 2012.

The trio began their journey in 2006 while they were interns at Shell Petroleum Company in the Niger Delta. Their work took them to remote villages, where people still lived without electricity access, despite being in an oil-rich region. These communities relied on kerosene lamps and candles for light and had to go to the village market to charge their mobile phones.

Can Asia-Pacific achieve sustainable energy for all?

Sharmila Bellur's picture

The Asia-Pacific region, comprised of 58 economies, is geographically expansive and a picture of diversity. The trends for sustainable energy in Asia-Pacific, which mirror the region’s economic and resource diversity, are underscored by the fact that Asia-Pacific comprises 60 percent of the global population, generates 32 percent of global GDP, consumes more than half of the global energy supply, while generating 55 percent of global emissions from fuel combustion. The region’s sustainable energy picture is captured in a new report by the United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP), entitled “Asia-Pacific Progress in Sustainable Energy: A Global Tracking Framework 2017 Regional Assessment Report.” The report is based on the World Bank and International Energy Agency’s Global Tracking Framework (GTF), which tracks the progress of countries on energy access, energy efficiency, and renewable energy under Sustainable Development Goal 7 (SDG7).
 
Photo credit: Flickr/World Bank

Four overarching sustainable energy themes emerge from the report:

A recap of energy stories from 2017

Aarthi Sivaraman's picture
Happy 2018, readers!

This year we aim to bring you even more engaging stories about global progress on sustainable energy.

Thank you for all your support and interest in our work through 2017. Here’s a recap of the biggest milestones of the past 12 months.
January: Need solar data? There’s an app for that



On Jan. 17, 2017 the World Bank unveiled the Global Solar Atlas, a free, web-based tool to help investors and policymakers identify potential sites for solar power generation virtually anywhere in the world, at the click of a button. The Atlas has the capacity to zoom into areas in great detail and provides access to high resolution global and regional maps and geographic information system (GIS) data, which could help countries save millions of dollars on their own research and provide investors and solar developers with an easily accessible and uniform platform to compare resource potential between sites.

The Neighborhood Battery System: Conserving Energy and Reducing Emissions in the Netherlands

Qiyang Xu's picture
Electric cars are so popular in the Netherlands that it would not be uncommon, say, for a Tesla to roll up as a taxi outside Amsterdam’s Schiphol Airport. And it is not tough to find charging stations for these cars in neighborhoods, parking lots, or even along the streets.

To reduce carbon emissions, national and local governments are taking various approaches—and, thus, electric cars, solar home systems, and energy-efficient solutions for buildings are booming in Europe. Cities like Amsterdam are front and center of this transformation. Netherlands, for instance,  has an ambitious goal of reducing CO2 emissions by 80–95 percent by 2050 compared with 1990, making it an ideal venue for a Smart Cities Tour earlier this year, where  a group of 26 representatives, including national and municipal officials and World Bank project teams, to learn from the Netherlands’ successful experience in energy sector transformation.

For instance, during a site visit to energy network company Alliander, we saw the pilot of a neighborhood battery system (NBS) in Rijsenhout, a town in the Western Netherlands near Amsterdam. The NBS is a local, community-level energy storage system that employs one large battery to stabilize neighborhood power distribution grids, particularly during peak hours. With a significant and increasing number of electric vehicle charging stations and solar panels installed in communities, electric networks are under increasing pressure to handle the variation between solar power during the day and concentrated peak electricity demand in the evenings and nights. Maintaining stable power supply and enhancing the resilience of the electricity grid to spikes in demand are fast becoming real challenges for these communities. While overhauling the power grids to prepare for these challenges could be costly and time-consuming, these small-scale NBS provide a low-cost, smart alternative solution.
 
Housing of the pilot neighborhood battery system in Rijsenhout, Netherlands.  Credit: Alliander

Machine Learning Helps Power Down Electricity Theft in Jamaica

Anna Lerner's picture
  • In Jamaica, about a quarter of electricity produced is stolen or “lost” through non-paying customers and/or accounting errors. Manual detection has failed to make a difference in reducing this theft.
  • ESMAP’s technical assistance team implemented a machine learning model to help Jamaican utility JPS identify and decrease incidents of theft.
  • The machine learning model is based on an open source code, and is available for free to any utility.
About a quarter of the electricity produced by Jamaica’s energy utility, Jamaica Public Service (JPS) is stolen. When traditional, labor-intensive methods failed to produce lasting results, Jamaica tried a different approach: machine learning.
 
Globally, billions of dollars are lost every year due to electricity theft, wherein electricity is distributed to customers but is never paid for. In 2014 alone, Jamaica’s total power transmission and distribution system reported 27% of losses (due to technical and non-technical reasons), close to double the regional average. While the utility company absorbs a portion of the cost, it also passes some of that cost onto consumers. Both actors therefore have an incentive to want to change this.
 
To combat this, JPS would spend more than $10 million (USD) on anti-theft measures every year, only to see theft numbers temporarily dip before climbing back up again. The problem was, these measures relied primarily on human-intensive, manual detection, and customers stealing electricity used more and more sophisticated ways to go around regularly metered use. JPS employees would use their institutional knowledge of serial offenders and would spend hours poring over metering data to uncover irregular patterns in electricity usage to identify shady accounts. But it wasn’t enough to effectively quash incidents of theft.

LED street lighting: Unburdening our cities

Jie Li's picture
LED street lighting in a municipal park. © Orion Trail / Thinkstock Photos.
Further permission required for reuse.
Each city is unique, defined not only by the individuals who call it home but also by the energy it exudes…and consumes. Projections indicate that 5 billion people (60% of the world’s population) will live in cities by 2050 and, according to the International Energy Agency, the overall demand for lighting will be 80% higher by 2030 than in 2005. Street lighting energy consumption is an increasingly significant part of cities energy use and a growing burden on municipal budgets.

Electrification planning made easier with new open source tool

Dimitris Mentis's picture


Evaluating the optimal way to expand electricity access across a country is difficult, especially in countries where energy related data is scarce and not centralized. Geospatial plans informing universal electricity access strategies and investments can easily take 18 to 24 months to complete.

A team working on a national electrification plan for Zambia last December did not have that much time.

They faced a six-month deadline to develop a plan, or they would miss out on a funding window, said Jenny Hasselsten, an energy specialist at the World Bank brought in to help with the electrification project in partnership with the government of Zambia.

Minerals and Metals Will Be Key to a Clean Environment

Daniele La Porta Arrobas's picture
Also available in: Français


The 2015 Paris Agreement on Climate Change was preceded by analysis covering the science and viability of response measures, including both adaptation to the impacts of climate change and measures to mitigate greenhouse gas (GHG) emissions. Mitigation issues typically covered the economic, policy, technology and sustainability implications of reducing emissions, but relatively little towards understanding the implications of a low-carbon future. 

For this reason, the World Bank decided to explore and study which minerals and metals will likely see an increase in demand to achieve a low-carbon future. Using wind, solar and energy storage batteries as proxies, The Growing Role of Minerals and Metals for a Low-Carbon Future report is one of the Bank’s contributions towards ensuring this topic is given its rightful place in the ongoing global climate change dialogue.

Based on climate and technology scenarios developed out of the International Energy Agency’s (IEA) Energy Technology Perspective, the World Bank developed a set of commodities demand projections up to 2050. We did so by providing best estimates on the uptake of three discrete climate-benefit technologies – wind, solar and energy storage batteries – required to help meet three different global warming scenarios of 20C, 40C, and 6oC. 
These technologies represent only a sub-set of a much broader suite of technologies and transmission systems required to truly deliver on a low-carbon future. Nevertheless, the findings are significant.

Policy shifts to strengthen China’s power sector reform

Yao Zhao's picture
Over the past few years, China saw more investment and installation in renewable energy than any other country in the world. In fact, in the period between 2010 and 2015, investment in the sector reached $377 billion, more than the next two countries - the United States and Germany – combined. China has 150 GW wind power and 77 GW solar photovoltaic power capacity compared to the U.S., for example, which has 80 GW in wind and 35 GW solar PV.

China has performed well above the global average, shined as the regional leader in East Asia, matched, if not outperformed, OCED countries in many dimensions, many countries with much lower investments and capacity have scored higher on renewable energy indicators.

Why the discrepancy?

The World Bank's Regulatory Indicators for Sustainable Energy (RISE) could shed some light on the issue. Launched in February 2017, RISE is a policy scorecard of unprecendented breadth and depth covering energy access, energy efficiency and renewable energy in 111 countries. It focuses on regulatory frameworks in these countries and measures that are within the direct responsibility of policy-makers. The result is based on data made available to the team at the end of 2015 and thoroughly validated.
 
 

Pages