#EndEnergyPoverty
Syndicate content

Sustainable Communities

The Neighborhood Battery System: Conserving Energy and Reducing Emissions in the Netherlands

Qiyang Xu's picture
Electric cars are so popular in the Netherlands that it would not be uncommon, say, for a Tesla to roll up as a taxi outside Amsterdam’s Schiphol Airport. And it is not tough to find charging stations for these cars in neighborhoods, parking lots, or even along the streets.

To reduce carbon emissions, national and local governments are taking various approaches—and, thus, electric cars, solar home systems, and energy-efficient solutions for buildings are booming in Europe. Cities like Amsterdam are front and center of this transformation. Netherlands, for instance,  has an ambitious goal of reducing CO2 emissions by 80–95 percent by 2050 compared with 1990, making it an ideal venue for a Smart Cities Tour earlier this year, where  a group of 26 representatives, including national and municipal officials and World Bank project teams, to learn from the Netherlands’ successful experience in energy sector transformation.

For instance, during a site visit to energy network company Alliander, we saw the pilot of a neighborhood battery system (NBS) in Rijsenhout, a town in the Western Netherlands near Amsterdam. The NBS is a local, community-level energy storage system that employs one large battery to stabilize neighborhood power distribution grids, particularly during peak hours. With a significant and increasing number of electric vehicle charging stations and solar panels installed in communities, electric networks are under increasing pressure to handle the variation between solar power during the day and concentrated peak electricity demand in the evenings and nights. Maintaining stable power supply and enhancing the resilience of the electricity grid to spikes in demand are fast becoming real challenges for these communities. While overhauling the power grids to prepare for these challenges could be costly and time-consuming, these small-scale NBS provide a low-cost, smart alternative solution.
 
Housing of the pilot neighborhood battery system in Rijsenhout, Netherlands.  Credit: Alliander

LED street lighting: Unburdening our cities

Jie Li's picture
LED street lighting in a municipal park. © Orion Trail / Thinkstock Photos.
Further permission required for reuse.
Each city is unique, defined not only by the individuals who call it home but also by the energy it exudes…and consumes. Projections indicate that 5 billion people (60% of the world’s population) will live in cities by 2050 and, according to the International Energy Agency, the overall demand for lighting will be 80% higher by 2030 than in 2005. Street lighting energy consumption is an increasingly significant part of cities energy use and a growing burden on municipal budgets.

From slums to neighborhoods: How energy efficiency can transform the lives of the urban poor

Martina Bosi's picture

Villa 31, an iconic urban settlement in the heart of Buenos Aires, is home to about 43,000 of the city’s poor. In Argentina, paradoxically, urban slums are called ‘villas’ – a word usually tied with luxury in many parts of the world.
 

How do we take energy access to the uprooted?

Liliana Elisabeta Benitez's picture
Also available in: Español
Aerial view of Al Zaatari Refugee Camp, Jordan. Photo: State Dept

You shall leave everything you love most; this is the arrow that the bow of exile shoots first,” wrote Dante in The Divine Comedy.
 
For most of the estimated 65 million displaced people around the world, every day is a struggle. Having survived a tumultuous journey in the hope of beginning anew, how does a displaced person begin to heal and plant roots in a strange new land?