Syndicate content

data audits

Sifting through data to detect deliberate misreporting in pay-for-performance schemes

Jed Friedman's picture

As empiricists, we spend a lot of time worrying about the accuracy of economic and socio-behavioral measurement. We want our data to reflect the targeted underlying truth. Unfortunately misreporting, either accidental or deliberate, from study subjects is a constant risk. The deliberate kind of misreporting is much more difficult to deal with because it is driven by complicated and unobserved respondent intentions – either to hide sensitive information or to try to please the perceived intentions of the interviewer. Respondents who misreport information for their own benefit are said to be “gaming”, and the challenge of gaming extends beyond research activities to development programs that depend on the accuracy of self-reported information for success.