Syndicate content

Poverty

Introducing two new dashboards in the Health, Nutrition and Population data portal

Haruna Kashiwase's picture

We’re pleased to launch new dashboards in the Health, Nutrition and Population Portal, following the portal’s revamp last year. The renewed HNP portal has two main dashboards covering Population and Health. Both dashboards are designed to be interactive data visualization tools where users can see various population and health indicators. Users can access various charts and maps by selecting specific time, country or region and indicators. We have added new indicators, charts and new health topics such as Universal Health Coverage and Surgery and Anesthesia. Below are some examples of stories gleaned from our dashboards.

India’s population is projected to surpass that of China around 2022

China, with 1.4 billion people, is the most populous country in the world in 2017. However, India, the second most populous country with 1.3 billion people, is projected to surpass China’s population by 2022. China’s total fertility rate (the number of children per woman) has also declined sharply since the 1970s.

Applications open for third round of funding for collaborative data innovation projects

World Bank Data Team's picture
Photo Credit: The Crowd and The Cloud


The Global Partnership for Sustainable Development Data and the World Bank Development Data Group are pleased to announce that applications are now open for a third round of support for innovative collaborations for data production, dissemination, and use. This follows two previous rounds of funding awarded in 2017 and earlier in 2018.

This initiative is supported by the World Bank’s Trust Fund for Statistical Capacity Building (TFSCB) with financing from the United Kingdom’s Department for International Development (DFID), the Government of Korea and the Department of Foreign Affairs and Trade of Ireland.

Scaling local data and synergies with official statistics

The themes for this year’s call for proposals are scaling local data for impact, which aims to target innovations that have an established proof of concept which benefits local decision-making, and fostering synergies between the communities of non-official data and official statistics, which looks for collaborations that take advantage of the relative strengths and responsibilities of official (i.e. governmental) and non-official (e.g.,private sector, civil society, social enterprises and academia) actors in the data ecosystem.

The 2018 Atlas of Sustainable Development Goals: an all-new visual guide to data and development

World Bank Data Team's picture
Also available in: Español | العربية | Français
Download PDF (30Mb) / View Online

“The World Bank is one of the world’s largest producers of development data and research. But our responsibility does not stop with making these global public goods available; we need to make them understandable to a general audience.

When both the public and policy makers share an evidence-based view of the world, real advances in social and economic development, such as achieving the Sustainable Development Goals (SDGs), become possible.” - Shanta Devarajan

We’re pleased to release the 2018 Atlas of Sustainable Development Goals. With over 180 maps and charts, the new publication shows the progress societies are making towards the 17 SDGs.

It’s filled with annotated data visualizations, which can be reproducibly built from source code and data. You can view the SDG Atlas online, download the PDF publication (30Mb), and access the data and source code behind the figures.

This Atlas would not be possible without the efforts of statisticians and data scientists working in national and international agencies around the world. It is produced in collaboration with the professionals across the World Bank’s data and research groups, and our sectoral global practices.
 

Trends and analysis for the 17 SDGs

Data science competition: predicting poverty is hard - can you do it better?

Tariq Khokhar's picture
 

If you want to reduce poverty, you have to be able to identify the poor. But measuring poverty is difficult and expensive, as it requires the collection of detailed data on household consumption or income. We just launched a competition together with data science platform Driven Data, to help us see how well we can predict a household’s poverty status based on easy-to-collect information and using machine learning algorithms.

The competition supplies a set of training data with anonymized qualitative variables from household surveys in 3 countries, including the “poor” or “not poor” classification for each observation.

The challenge is to build models which can accurately classify households from a different set of test data (with the poor/not poor classification removed!) for the same 3 countries, and then submit them for scoring. Performance is measured by the mean log loss for the 3 countries which tells us how accurate the classification models developed are.

Prizes are $6,000; $4,000; and $2,500 for the top 3 performing entries, plus a $2,500 bonus prize for the top-performing entry from a low- or lower-middle income country. The deadline for entries is February 28th 2018.

You can read the full problem description and enter the competition here, and see the Driven Data team’s “benchmark solution” based on a random forest classifier.

Good luck - we look forward to seeing your solutions!

Chart: 100 Million People Pushed into Poverty by Health Costs in 2010

Tariq Khokhar's picture
Also available in: 中文 | Español | العربية | Français



Universal health coverage (UHC) means that all people can obtain the health services they need without suffering financial hardship. A new report produced by the World Bank and the World Health Organization, finds that health expenditures are pushing about 100 million people per year into “extreme poverty,” those who live on $1.90 or less a day; and about 180 million per year into poverty using a $3.10 per day threshold.

You can access the report, data, interactive visualizations, and background papers at: http://data.worldbank.org/universal-health-coverage/

Chart: 16 of the 17 Warmest Years on Record Occurred Since 2001

Tariq Khokhar's picture
Also available in: العربية | Español | Français

Sixteen of the 17 warmest years in the 136-year record have occurred since 2001. The year 2016 ranks as the warmest on record. Recent analysis finds that climate change could push more than 100 million more people into poverty by 2030. But good development—­rapid, inclusive, and climate informed—­can prevent most of the impacts of climate change on extreme poverty by 2030.

 

Counting calories: the data behind food insecurity and hunger

Irina I. Klytchnikova's picture

This blog is part of a series using data from World Development Indicators to explore progress towards the Sustainable Development Goals and their associated targets. The new Atlas of Sustainable Development Goals 2017, published in April 2017, and the SDG Dashboard provide in-depth analyses of all 17 goals.

 

As Agriculture Economists who work on advancing the food and agriculture agenda, SDG 2 articulates much of our work in the Sustainable Development agenda and illustrates how food and agriculture are intertwined with poverty reduction. Goal 2 seeks to “End hunger, achieve food security and improve nutrition, and promote sustainable agriculture.”

Without making progress on Goal 2, we can’t achieve the Bank’s twin goals of ending poverty and boosting shared prosperity.

But what does Goal 2 mean, exactly? On the surface, it might seem to be a matter of producing more food in a sustainable way. But a deeper dive into this SDG reveals that it is not quite that simple.

Latest from the LSMS: New data from Tanzania and Nigeria, dynamics of wellbeing in Ethiopia & using non-standard units in data collection

Vini Vaid's picture

Message from Gero Carletto (Manager, LSMS)

It has been a busy few months for the LSMS team! Together with several Italian and African institutions, we recently launched the Partnership for Capacity Development in Household Surveys for Welfare Analysis. The initiative cements a long-term collaboration to train trainers from regional training institutions in Sub-Saharan Africa to harmonize survey data and promote the adoption of best practices in household surveys across the region (see below for more details). In addition, we have contributed to several international conferences and meetings, such as the Annual Bank Conference on Africa (featured below), where we witnessed the creative use of the data we helped collect and disseminate. Finally, LSMS was part of a documentary on the Public Broadcasting Service (PBS) called The Crowd & The Cloud. The fourth episode featured our very own Talip Kilic and the Uganda Bureau of Statistics, working hand in hand to produce household and farm-level panel data, which have been game changers in informing government policymaking and investment decisions, as well as in advancing the methodological frontier. We look forward to many more exciting quarters as we continue to work with our partners to improve the household survey landscape!

New Partnership for Capacity Development in Household Surveys for Welfare Analysis

Vini Vaid's picture

In low- and middle-income countries, household surveys are often the primary source of socio-economic data used by decision makers to make informed decisions and monitor national development plans and the SDGs. However, household surveys continue to suffer from low quality and limited cross-country comparability, and many countries lack the necessary resources and know-how to develop and maintain sustainable household survey systems.
 
The World Bank’s Center for Development Data (C4D2) in Rome and the Bank of Italy— with financial support by the Italian Agency for Development Cooperation and commitments from other Italian and African institutions—have launched a new initiative to address these issues.

The Partnership for Capacity Development in Household Surveys for Welfare Analysis aims to improve the quality and sustainability of national surveys by strengthening capacity in regional training centers in the collection, analysis, and use of household surveys and other microdata, as well as in the integration of household surveys with other data sources.
 
On Monday, nine partners signed an MoU describing the intent of the Partnership, at the Bank of Italy in Rome. The signatories included Haishan Fu (Director, Development Data Group, World Bank), Valeria Sannucci (Deputy Governor, Bank of Italy), Pietro Sebastiani (Director General for Cooperation and Development, Ministry of Foreign Affairs and International Cooperation of the Italian Republic), Laura Frigenti (Director, Italian Agency for Development Cooperation), Giorgio Alleva (President, Italian National Institute of Statistics), Stefano Vella (Research Manager, Italian National Institute of Health), Oliver Chinganya (Director, African Centre for Statistics of the UN Economic Commission for Africa), Frank Mkumbo (Rector, Eastern Africa Statistical Training Center), and Hugues Kouadio (Director, École Nationale Supérieure de Statistique et d’Économie Appliquée).
 
The Partnership will offer a biannual Training Week on household surveys and thematic workshops on specialized topics to be held in Italy in training facilities made available by the Bank of Italy, as well as regular short courses and seminars held at regional statistical training facilities to maximize outreach and impact. The first of a series of Training-of-Trainers (ToT) courses will be held in Fall 2017.
 
For more information, please contact: [email protected].

Pages