Syndicate content

July 2018

Introducing two new dashboards in the Health, Nutrition and Population data portal

Haruna Kashiwase's picture

We’re pleased to launch new dashboards in the Health, Nutrition and Population Portal, following the portal’s revamp last year. The renewed HNP portal has two main dashboards covering Population and Health. Both dashboards are designed to be interactive data visualization tools where users can see various population and health indicators. Users can access various charts and maps by selecting specific time, country or region and indicators. We have added new indicators, charts and new health topics such as Universal Health Coverage and Surgery and Anesthesia. Below are some examples of stories gleaned from our dashboards.

India’s population is projected to surpass that of China around 2022

China, with 1.4 billion people, is the most populous country in the world in 2017. However, India, the second most populous country with 1.3 billion people, is projected to surpass China’s population by 2022. China’s total fertility rate (the number of children per woman) has also declined sharply since the 1970s.

Data quality in research: what if we’re watering the garden while the house is on fire?

Michael M. Lokshin's picture

A colleague stopped me by the elevators while I was leaving the office.

“Do you know of any paper on (some complicated adjustment) of standard errors?”

I tried to remember, but nothing came to mind – “No, why do you need it?”

“A reviewer is asking for a correction.”

I mechanically took off my glasses and started to rub my eyes – “But it will make no difference. And even if it does, wouldn’t it be trivial compared to the other errors in your data?”

“Yes, I know. But I can’t control those other errors, so I’m doing my best I can, where I can.”

This happens again and again — how many times have I been in his shoes? In my previous life as an applied micro-economist, I was happily delegating control of data quality to “survey professionals” — national statistical offices or international organizations involved in data collection, without much interest in looking at the nitty-gritty details of how those data were collected. It was only after I got directly involved in survey work that I realized the extent to which data quality is affected by myriad extrinsic factors, from the technical (survey standards, protocols, methodology) to the practical (a surprise rainstorm, buggy software, broken equipment) to the contextual (the credentials and incentives of the interviewers, proper training and piloting), and a universe of other factors which are obvious to data producers but usually obscure and typically hidden from data users.

New country classifications by income level: 2018-2019

World Bank Data Team's picture
Also available in: 中文 | Français | العربية | Español

Updated country income classifications for the World Bank’s 2019 fiscal year are available here.

The World Bank assigns the world's economies into four income groups — high, upper-middle, lower-middle, and low. We base this assignment on GNI per capita calculated using the Atlas method. The units for this measure and for the thresholds is current US Dollars.

At the Bank, these classifications are used to aggregate data for groups of similar countries. The income-category of a country is not one of the factors used that influence lending decisions.

Each year on July 1st, we update the classifications. They change for two reasons:

1. In each country, factors such as income growth, inflation, exchange rates, and population change, influence GNI per capita.

2. To keep the dollar thresholds which separate the classifications fixed in real terms, we adjust them for inflation.

The data for the first adjustment come from estimates of 2017 GNI per capita which are now available. This year, the thresholds have moved down slightly because of low price inflation and the strengthening of the US dollar. Click here for information about how the World Bank classifies countries.

Updated Thresholds

New thresholds are determined at the start of the Bank’s fiscal year in July and remain fixed for 12 months regardless of subsequent revisions to estimates. As of July 1 2018, the new thresholds for classification by income are:

Threshold GNI/Capita (current US$)
Low-income < 995
Lower-middle income 996 - 3,895
Upper-middle income 3,896 - 12,055
High-income > 12,055

Changes in Classification

The following countries have new income groups:

Country Old group New group
Argentina Upper-middle High-income
Armenia Lower-middle Upper-middle
Croatia Upper-middle High-income
Guatemala Lower-middle Upper-middle
Jordan Lower-middle Upper-middle
Panama Upper-middle High-income
Syrian Arab Rep. Lower-middle Low-income
Tajikistan Lower-middle Low-income
Yemen Rep. Lower-middle Low-income

The country and lending groups page provides a complete list of economies classified by income, region, and lending status and links to previous years’ classifications. The classification tables include all World Bank members, plus all other economies with populations of more than 30,000. The term country, used interchangeably with economy, does not imply political independence but refers to any territory for which authorities report separate social or economic statistics.

Tables showing 2017 GNI, GNI per capita, GDP, GDP PPP, and Population data are also available as part of the World Bank's Open Data Catalog. Note that these are preliminary estimates and may be revised. For more information, please contact us at [email protected]