Syndicate content

Which countries could be affected by plunging oil prices: a data perspective

Siddhesh Kaushik's picture
Tumbling oil prices continue to dominate the headlines. Although oil prices have started to rise earlier in the week, this issue is still of concern to many oil-exporting countries.
 


(Source: FRED Economic Data)

A recent World Bank Group feature story broke down country by country the potential regional consequences. And according to the Bank Group’s Global Economic Prospects report, the decline in oil prices will dampen growth prospects for oil-exporting countries.

There are various factors that can be used to assess the impact of falling oil prices on countries. One such factor is trade. Countries exporting mostly fuel products will lose export revenue as oil prices drop. The chart below shows the top 15 countries that exported fuel in 2012. You can visualize the data for other years and products using the World Integrated Trade Solution’s (WITS) product analysis visualization tool.

Tracking Urbanization: How big data can drive policies to make cities work for the poor

Axel van Trotsenburg's picture

Every minute, dozens of people in East Asia move from the countryside to the city.
The massive population shift is creating some of the world’s biggest mega-cities including Tokyo, Shanghai, Jakarta, Seoul and Manila, as well as hundreds of medium and smaller urban areas.

This transformation touches on every aspect of life and livelihoods, from access to clean water to high-speed trains that transport millions of people in and out of cities during rush hour each weekday.

Funding The Data Revolution

Claire Melamed's picture

A revolution starts with an idea, but to become real, it has to move quickly to a practical proposition about getting stuff done.  And getting things done needs money.  If the ideas generated last year, in the report of the UN Secretary General’s Independent Expert Advisory Group and elsewhere, about how to improve data production and use are to become real, then they will need investments.  It’s time to start thinking about where the money to fund the data revolution might come from, and how it might be spent.

Getting funding for investment in data won’t be easy.  As hard-pressed statistical offices around the world know to their cost, it’s tough to persuade governments to put money into counting things instead of, say, teaching children or paying pensions.  But unless the current excitement about data turn into concrete commitments, it will all fade away once the next big thing comes along, leaving little in the way of lasting change.

Next step for the Data Revolution: financing emerging priorities

Grant Cameron's picture
Also available in: 中文

Last August, the UN Secretary-General Ban Ki-moon asked an Independent Expert Advisory Group (IEAG) to make concrete recommendations on bringing about a Data Revolution in sustainable development.  In response, the IEAG delivered its report, and among other items, recommends, “a new funding stream to support the Data Revolution for sustainable development should be endorsed at the Third International Conference on Financing for Development,” in Addis Ababa in July 2015.

Three Issues Papers for Consultation

To support this request and to stimulate conversation, the World Bank Group has drafted issues papers that focus on three priority areas:

  1. Data innovation
  2. Public-private partnerships for data
  3. Data literacy and promotion of data use

The papers aim to flesh out the specific development needs, as well as financing characteristics needed to support each area. A fuller understanding of these characteristics will determine what kind of financing mechanism(s) or instrument(s) could be developed to support the Data Revolution.

Debt data: how debt inflows differ among developing countries

Molly Fahey Watts's picture
Also available in: العربية | Español | Français | 中文

The World Bank Group’s International Debt Statistics (IDS) 2015 was released today. The Bank’s flagship debt data publication features 2013 data on external debt stocks and flows, as well as other major financial indicators on the 124 developing countries that report to the World Bank’s Group’s Debt Reporting System.

The major news from this year’s IDS is that net external debt flows to developing countries rose 28% in 2013, driven by a sharp 50% increase in short-term debt inflows. Additionally, foreign direct investment in emerging economies proved to be steady and resilient, bringing net capital flows (debt and equity) to $1.2 trillion.

For more detailed analysis and trends on debt statistics, take a look at IDS's debt portal featuring online tables. Here are a few highlights I thought I'd share.

Data Group launches newly revamped Statistical Capacity Indicator website

Annette Kinitz's picture

When a country’s statistical capacity improves and policy makers use accurate statistics to inform their decisions, this results in better development policy design and outcomes. In this regard, the Statistical Capacity Indicator (SCI) serves as an essential monitoring and tracking tool, as well as helps National Statistics Offices (NSOs) worldwide to address a country’s gaps in their capabilities to collect, produce, and use data.
 
The Statistical Capacity Indicator’s Global Reach
Since 2004, the SCI continues to assess the capacity of a developing country’s ability to adhere to international statistical standards and methods, whether or not its activities are in line with internationally recommend periodicity, and whether the data are available in a timely fashion.

To this end, there are 25 indicators that annually monitor and “grade” a country’s statistical capacity progress and thus form the basis for the overall SCI score calculation.
 
While NSOs are the main users of the SCI score, the World Bank Group, international development agencies, and donor countries also refer to the SCI score for their own evaluation and monitoring purposes.

New surveys reveal dynamism, challenges of open data-driven businesses in developing countries

Alla Morrison's picture

Open data for economic growth continues to create buzz in all circles.  We wrote about it ourselves on this blog site earlier in the year.  You can barely utter the phrase without somebody mentioning the McKinsey report and the $3 trillion open data market.  The Economist gave the subject credibility with its talk about a 'new goldmine.' Omidyar published a report a few months ago that made $13 trillion the new $3 trillion.  The wonderful folks at New York University's GovLab launched the OpenData500 to much fanfare.  The World Bank Group got into the act with this study.  The Shakespeare report was among the first to bring attention to open data's many possibilities. Furthermore, governments worldwide now routinely seem to insert economic growth in their policy recommendations about open data – and the list is long and growing.

Map

Geographic distribution of companies we surveyed. Here is the complete list.
 
We hope to publish a detailed report shortly but here meanwhile are a few of the regional findings in greater detail.

Open India: new interactive app features state-level sectoral data

Vilas Mandlekar's picture
Also available in: Français | Español
What is the World Bank Group (WBG) doing to help address India's development challenges? And how is the Bank doing in implementing its programs in India's low-income states?  These are some of the questions that are addressed via Open India (openindia.worldbankgroup.org), a new web-based app that lays out the WBG's Country Partnership Strategy (CPS), operational projects, and knowledge products in India.

What makes the Open India site unique?
This web app takes a new and different approach in presenting the WBG's partnership strategy and current projects, by doing so in a transparent, interactive, and easy-to-use web platform. It features data visualizations that connect the main engagement areas  ̶   Economic Integration, Spatial Transformation, and Social Inclusion  ̶   with the underlying challenges that are being addressed through the WBG's operations and knowledge products in India.  An essential component of the new Open India web app is sectoral data that quantifies India's development challenges. For example, the range of India's infrastructure and transportation gaps is presented as a data visualization below.
 

Source: Open India
 

Relative versus absolute poverty headcount ratios: the full breakdown

Juan Feng's picture
Also available in: 中文 | العربية | Français | Español

Most countries in the world measure their poverty using an absolute threshold, or in other words, a fixed standard of what households should be able to count on in order to meet their basic needs. A few countries, however, have chosen to measure their poverty using a relative threshold, that is, a cutoff point in relation to the overall distribution of income or consumption in a country.

Chart 1


The chart above shows the differences between relative and absolute poverty headcount ratios for countries that have measured both. You can select other countries from the drop down list, but for example, you can see that Romania switched from measuring poverty in absolute terms to measuring poverty in relative terms in 2006.  Absolute poverty headcount ratios steadily declined from 35.9% in 2000 to 13.8% in 2006. However, by relative measures, the national poverty headcount ratio in 2006 was 24.8%.  This does not mean that poverty bumped up in 2006. These two numbers are simply not comparable, but what exactly do they both mean?

Kenya’s re-based national accounts: myths, facts, and the consequences

Johan Mistiaen's picture

A month ago, the Kenya National Bureau of Statistics (KNBS) Kenya released a set of re-based and revised National Accounts Statistics (NAS), the culmination of an exercise that started in 2010.  Press coverage, reactions from investors and the public have been generally favorable, but some confusion still looms regarding some of the facts and consequences.  We wrote this blog post to debunk some of the myths.

NAS, including Gross Domestic Product (GDP), are typically measured by reference to the economic structure in a “base” year.  Statisticians sample businesses in different industries to collect data that measures how fast they are growing.  The weight they give to each sector depends on its importance to the economy in the base year.  As time passes and the structure of the economy changes, these figures become less and less accurate.

Re-basing is a process of using more recently collected data to replace an old base year with a new one to reflect the structural changes in the economy.  Re-basing also provides an opportunity to add new or more comprehensive data, incorporate new or better statistical methods, and apply advancements in classification and compilation standards. The current gold standard is the 2008 System of National Accounts (SNA).

Pages