Syndicate content

Machine learning

Artificial intelligence for smart cities: insights from Ho Chi Minh City’s spatial development

Ran Goldblatt's picture
Zoning by Land Parcel (Source: https://thongtinquyhoach.hochiminhcity.gov.vn)

It’s amazing to see what technology can do these days! Satellites provide daily images of almost every location on earth, and computers can be trained to process massive amounts of data generated from them to produce insightful analysis/information. This is just one of the demonstrations of artificial intelligence (AI). AI can go beyond just reading images captured from space, it can help improve lives overall.

For urban governance, machine learning and AI are increasingly used to provide near real-time analysis of how cities change in practice – for example, through the conversion of green areas into built-up structures. By teaching computers what to look for in satellite images, rapidly expanding sources of satellite data (public and commercial), together with machine learning algorithms, can be leveraged to quickly reveal how actual city development aligns with planning and zoning or which communities are most prone to flooding. This provides insights beyond the basic satellite snapshots and time-lapse visualizations that can now be readily generated for any areas of interest.

But the barriers to applying these technologies can still seem daunting for many cities around the world. It’s not always clear how exactly to analyze this massive amount of satellite data, nor how to get access to it.

Conversations with Chatbots: Exploring AI’s Potential for Development

Haishan Fu's picture

Development work is getting more technologically sophisticated by the day. The World Bank’s Information and Technology Solutions (ITS) department recently started an Artificial Intelligence (AI) Initiative. At the launch event, we explored the role of AI in development and what it might mean for the work that we do here at the Bank. In short: AI is already here, international organizations have an important role to play, and we need to invest in our skills and expertise.

AI is already being incorporated into development projects

A growing family of Artificial Intelligence techniques are being employed in development. Using machine learning for classification and prediction tasks is becoming as routine as running regressions. Our team recently launched a data science competition on poverty prediction and has been evaluating the performance of different machine learning algorithms. This includes the use of automated machine learning where the machine itself helps to select and tune models in a way a data scientist ordinarily would.