Attend Spring Meetings on Development topics from Apr 17-21. Comment and engage with experts. Calendar of Events


Syndicate content

Panama

National and local leaders in Latin America: Sustainable cities are resilient cities

Sameh Wahba's picture
Cities are critical engines of global growth. But as cities grow, they’re increasingly vulnerable to climate change and natural disasters.
 
The year of 2017 was one of many recent reminders of that “new normal”—from Hurricanes Harvey, Irma, and Maria that pounded coastal United States and the Caribbean to the severe drought that struck Somali, which led to the displacement and even life losses of individuals and families.
 
Even when lives are not threatened, livelihoods are at stake: Without major action taken to invest in urban resilience, climate change may force up to 77 million urban residents back into poverty by 2030.
 
[Report: Investing in Urban Resilience]

This helps explain why many city leaders attending the World Urban Forum in Kuala Lumpur, Malaysia this week resonate with the same message: Sustainable cities are resilient cities.
 
At the forum, we spoke with national, municipal, and civil society leaders on the issue of urban resilience—including ministers and mayors from three Latin American countries, a region full of emerging cities and aspiring populations that are no stranger to hurricanes, earthquakes, and other natural disasters. 
 
Watch the videos below and leave a comment to let us know what your city may be doing differently to enhance urban resilience.
 
 


Michael Berkowitz
President, 100 Resilient Cities

What can satellite imagery tell us about secondary cities? (Part 2/2)

Sarah Elizabeth Antos's picture
In the previous blog, we discussed how remote sensing techniques could be used to map and inform policymaking in secondary cities, with a practical application in 10 Central American cities. In this post, we dive deeper into the caveats and considerations when replicating these data and methods in their cities.

Can we rely only on satellite? How accurate are these results?

It is standard practice in classification studies (particularly academic ones) to assess accuracy from behind a computer. Analysts traditionally pick a random selection of points and visually inspect the classified output with the raw imagery. However, these maps are meant to be left in the hands of local governments, and not published in academic journals.

So, it’s important to learn how well the resulting maps reflect the reality on the ground.

Having used the algorithm to classify land cover in 10 secondary cities in Central America, we were determined to learn if the buildings identified by the algorithm were in fact ‘industrial’ or ‘residential’. So the team packed their bags for San Isidro, Costa Rica and Santa Ana, El Salvador.

Upon arrival, each city was divided up into 100x100 meter blocks. Focusing primarily on the built-up environment, roughly 50 of those blocks were picked for validation. The image below shows the city of San Isidro with a 2km buffer circling around its central business district. The black boxes represent the validation sites the team visited.
 
Land Cover validation: A sample of 100m blocks that were picked to visit in San Isidro, Costa Rica. At each site, the semi-automated land cover classification map was compared to what the team observed on the ground using laptops and the Waypoint mobile app (available for Android and iOS).

What can satellite imagery tell us about secondary cities? (Part 1/2)

Sarah Elizabeth Antos's picture

The buzz around satellite imagery over the past few years has grown increasingly loud. Google Earth, drones, and microsatellites have grabbed headlines and slashed price tags. Urban planners are increasingly turning to remotely sensed data to better understand their city.

But just because we now have access to a wealth of high resolution images of a city does not mean we suddenly have insight into how that city functions.

The question remains: How can we efficiently transform big data into valuable products that help urban planners?

In an effort a few years ago to map slums, the World Bank adopted an algorithm to create land cover classification layers in large African cities using very high resolution imagery (50cm). Building on the results and lessons learned, the team saw an opportunity in applying these methods to secondary cities in Latin America & the Caribbean (LAC), where data availability challenges were deep and urbanization pressures large. Several Latin American countries including Argentina, Bolivia, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, and Panama were faced with questions about the internal structure of secondary cities and had no data on hand to answer such questions.

A limited budget and a tight timeline pushed the team to assess the possibility of using lower resolution images compared to those that had been used for large African cities. Hence, the team embarked in the project to better understand the spatial layout of secondary cities by purchasing 1.5 meter SPOT6/7 imagery and using a semi-automated classification approach to determine what types of land cover could be successfully detected.

Originally developed by Graesser et al 2012 this approach trains (open source) algorithm to leverage both the spectral and texture elements of an image to identify such things as industrial parks, tightly packed small rooftops, vegetation, bare soil etc.

What do the maps look like? The figure below shows the results of a classification in Chinandega, Nicaragua. On the left hand side is the raw imagery and the resulting land cover map (i.e. classified layer) on the right. The land highlighted by purple shows the commercial and industrial buildings, while neighborhoods composed of smaller, possibly lower quality houses are shown in red, and neighborhoods with slightly larger more organized houses have been colored yellow. Lastly, vegetation is shown as green; bare soil, beige; and roads, gray.

Want to explore our maps? Download our data here. Click here for an interactive land cover map of La Ceiba.