Syndicate content

geospatial

A road by any other name: street naming and property addressing system in Accra, Ghana

Linus Pott's picture
Street names in Accra, Ghana
Street names in Accra, Ghana. Photo credit: Ben Welle/ Flickr CC
When I used to work in Rwanda, I lived on a small street in Kigali. Every time I invited friends over, I would tell them to “walk past the Embassy, look out for the Church, and then continue to the house with the black gate.” The day a street sign was erected on my street was a game changer.
 
So how do more than two million citizens of Accra navigate the busy city without the help of street names? While some street names are commonly known, most streets do not have any official name, street sign or house number. Instead, people usually refer to palm trees, speed bumps, street vendors, etc.

But, what happens when the palm tree is cut or when the street vendor changes the location?

The absence of street names poses not only challenges for orientation, but also for property tax collection, postal services, emergency services, and the private sector. Especially, new economy companies, such as Amazon or Uber, depend on street addressing systems and are eager to cater to market demands of a growing middle class.

To address these challenges, the Accra Metropolitan Assembly (AMA), financed by the World Bank’s second Land Administration Project , is implementing a street addressing and property numbering system in Accra. Other Metropolitan areas received funding from other World Bank-funded projects for similar purposes.
 

What can satellite imagery tell us about secondary cities? (Part 2/2)

Sarah Elizabeth Antos's picture
In the previous blog, we discussed how remote sensing techniques could be used to map and inform policymaking in secondary cities, with a practical application in 10 Central American cities. In this post, we dive deeper into the caveats and considerations when replicating these data and methods in their cities.

Can we rely only on satellite? How accurate are these results?

It is standard practice in classification studies (particularly academic ones) to assess accuracy from behind a computer. Analysts traditionally pick a random selection of points and visually inspect the classified output with the raw imagery. However, these maps are meant to be left in the hands of local governments, and not published in academic journals.

So, it’s important to learn how well the resulting maps reflect the reality on the ground.

Having used the algorithm to classify land cover in 10 secondary cities in Central America, we were determined to learn if the buildings identified by the algorithm were in fact ‘industrial’ or ‘residential’. So the team packed their bags for San Isidro, Costa Rica and Santa Ana, El Salvador.

Upon arrival, each city was divided up into 100x100 meter blocks. Focusing primarily on the built-up environment, roughly 50 of those blocks were picked for validation. The image below shows the city of San Isidro with a 2km buffer circling around its central business district. The black boxes represent the validation sites the team visited.
 
Land Cover validation: A sample of 100m blocks that were picked to visit in San Isidro, Costa Rica. At each site, the semi-automated land cover classification map was compared to what the team observed on the ground using laptops and the Waypoint mobile app (available for Android and iOS).

What can satellite imagery tell us about secondary cities? (Part 1/2)

Sarah Elizabeth Antos's picture

The buzz around satellite imagery over the past few years has grown increasingly loud. Google Earth, drones, and microsatellites have grabbed headlines and slashed price tags. Urban planners are increasingly turning to remotely sensed data to better understand their city.

But just because we now have access to a wealth of high resolution images of a city does not mean we suddenly have insight into how that city functions.

The question remains: How can we efficiently transform big data into valuable products that help urban planners?

In an effort a few years ago to map slums, the World Bank adopted an algorithm to create land cover classification layers in large African cities using very high resolution imagery (50cm). Building on the results and lessons learned, the team saw an opportunity in applying these methods to secondary cities in Latin America & the Caribbean (LAC), where data availability challenges were deep and urbanization pressures large. Several Latin American countries including Argentina, Bolivia, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, and Panama were faced with questions about the internal structure of secondary cities and had no data on hand to answer such questions.

A limited budget and a tight timeline pushed the team to assess the possibility of using lower resolution images compared to those that had been used for large African cities. Hence, the team embarked in the project to better understand the spatial layout of secondary cities by purchasing 1.5 meter SPOT6/7 imagery and using a semi-automated classification approach to determine what types of land cover could be successfully detected.

Originally developed by Graesser et al 2012 this approach trains (open source) algorithm to leverage both the spectral and texture elements of an image to identify such things as industrial parks, tightly packed small rooftops, vegetation, bare soil etc.

What do the maps look like? The figure below shows the results of a classification in Chinandega, Nicaragua. On the left hand side is the raw imagery and the resulting land cover map (i.e. classified layer) on the right. The land highlighted by purple shows the commercial and industrial buildings, while neighborhoods composed of smaller, possibly lower quality houses are shown in red, and neighborhoods with slightly larger more organized houses have been colored yellow. Lastly, vegetation is shown as green; bare soil, beige; and roads, gray.

Want to explore our maps? Download our data here. Click here for an interactive land cover map of La Ceiba.

How geospatial technology can help cities plan for a sustainable future

Xueman Wang's picture
In this video, representatives from the World Bank, GEF, and City of Johannesburg discuss the impact of geospatial tools on urban planning.

Many urban residents these days will find it hard to imagine a life without mobile apps that help us locate a restaurant, hail a cab, or find a subway station—usually in a matter of seconds. If geospatial technology and data already make our everyday lives this easier, imagine what they can do for our cities: for example, geospatial data on land-use change and built-up land expansion can provide for more responsive urban planning, while information on traffic conditions, road networks, and solid waste sites can help optimize management and enhance the quality of urban living.

The “urban geo-data gap”
 
However, information and data that provide the latest big picture on urban land and services often fail to keep up with rapid population growth and land expansion. This is especially the case for cities in developing countries—home to the fastest growing urban and vulnerable populations.