Syndicate content

SDG7

Cooking helped us survive… modern energy cooking services can make us thrive

Yabei zhang's picture
About 30 years ago, I lived in a village in China's Xinjiang province where I remember having to collect firewood for cooking and heating as part of my chores. In fact, as part of summer homework, we also needed to turn in a big bundle of firewood when the school started in the fall, which would be used to heat the classroom, together with coal.

Cooking with firewood was not only a tough job because of all the smoke but also required skills and experience. If the fire was not well controlled, the rice could be easily burned. Before I was old enough to take on this job, our family moved to a city apartment with access to district heating and we also started to use liquefied petroleum gas (LPG) for cooking. Since then, our daily life has been transformed.
 
However, not everyone is as lucky as me. 

Can Asia-Pacific achieve sustainable energy for all?

Sharmila Bellur's picture

The Asia-Pacific region, comprised of 58 economies, is geographically expansive and a picture of diversity. The trends for sustainable energy in Asia-Pacific, which mirror the region’s economic and resource diversity, are underscored by the fact that Asia-Pacific comprises 60 percent of the global population, generates 32 percent of global GDP, consumes more than half of the global energy supply, while generating 55 percent of global emissions from fuel combustion. The region’s sustainable energy picture is captured in a new report by the United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP), entitled “Asia-Pacific Progress in Sustainable Energy: A Global Tracking Framework 2017 Regional Assessment Report.” The report is based on the World Bank and International Energy Agency’s Global Tracking Framework (GTF), which tracks the progress of countries on energy access, energy efficiency, and renewable energy under Sustainable Development Goal 7 (SDG7).
 
Photo credit: Flickr/World Bank

Four overarching sustainable energy themes emerge from the report:

Machine Learning Helps Power Down Electricity Theft in Jamaica

Anna Lerner's picture
  • In Jamaica, about a quarter of electricity produced is stolen or “lost” through non-paying customers and/or accounting errors. Manual detection has failed to make a difference in reducing this theft.
  • ESMAP’s technical assistance team implemented a machine learning model to help Jamaican utility JPS identify and decrease incidents of theft.
  • The machine learning model is based on an open source code, and is available for free to any utility.
About a quarter of the electricity produced by Jamaica’s energy utility, Jamaica Public Service (JPS) is stolen. When traditional, labor-intensive methods failed to produce lasting results, Jamaica tried a different approach: machine learning.
 
Globally, billions of dollars are lost every year due to electricity theft, wherein electricity is distributed to customers but is never paid for. In 2014 alone, Jamaica’s total power transmission and distribution system reported 27% of losses (due to technical and non-technical reasons), close to double the regional average. While the utility company absorbs a portion of the cost, it also passes some of that cost onto consumers. Both actors therefore have an incentive to want to change this.
 
To combat this, JPS would spend more than $10 million (USD) on anti-theft measures every year, only to see theft numbers temporarily dip before climbing back up again. The problem was, these measures relied primarily on human-intensive, manual detection, and customers stealing electricity used more and more sophisticated ways to go around regularly metered use. JPS employees would use their institutional knowledge of serial offenders and would spend hours poring over metering data to uncover irregular patterns in electricity usage to identify shady accounts. But it wasn’t enough to effectively quash incidents of theft.

How many people does it take to change a light bulb?

Ashok Sarkar's picture
What is this? Read on to find out.

Riddle us this. In what country are...
  • 450 million ceiling fans already in use, 40 million new ones sold every year?
  • 350 million fluorescent tube lights already in use, 10 million new sold every year?
  • 30 million air conditioners already in use, three million new sold every year?
If you guessed India, you are right.

With a population of about 1.2 billion, India is one of the largest consumer markets in the world. So it’s no surprise that household appliances account for several gigawatts of electricity usage across the country. As India’s middle class grows and people move from villages to towns and cities, electricity usage is only increasing. In fact, hundreds of millions of electric appliances will be added over the next few decades. This poses a serious challenge for India’s energy security since there already are electricity supply shortages, which often lead to chronic outages and blackouts. The surge in household appliances is also a climate change challenge—India, the world’s third-largest CO2 emitter, is predicted to continue increasing its greenhouse gas emissions at least until 2030.

But India is turning this challenge into an opportunity by tapping into energy efficiency solutions, a relatively new area with already a few major successes. Considered globally as the “first fuel,” energy efficiency is rising to the forefront of India’s quest for innovative solutions to provide 24/7 reliable and affordable electricity for all.