Syndicate content

electric vehicles

How do we help cities breathe better? Introducing the Clean Bus Project

Kavita Sethi's picture
Buses, cyclist, and car traffic in Santiago de Chile. Photo: Claudio Olivares Medina/Flickr
Earlier this month, Santiago de Chile took delivery of 100 brand-new electric buses. The event was a first in the region, and impressive images of the state-of-the-art buses driving in convoy toward their new home in Chile’s capital city were shared by global media. These buses are part of a broader effort to tackle smog and revolutionize the city’s public transport system. By 2022, Chile aims to increase the number of electric vehicles in the country tenfold, which would put it in the vanguard of clean mobility in Latin America and the Caribbean (LAC), and amongst developing countries worldwide. These changes are expected to help the country meet its Nationally Determined Contributions (NDCs) target, set in the wake of the Paris Agreement on climate change. The target calls for a 30% reduction in GHG emissions per unit of GDP by 2030, with transportation being one of the main sectors for mitigation.

The story of Santiago, however, remains an exception in the region. Though Latin American countries, as signatories to the Paris Agreement, have signaled their concrete intention to embrace a low-carbon future, the transition to low and zero-emissions vehicles has been slow. To better understand the challenges in accelerating the adoption of clean technologies in LAC, the World Bank has recently implemented the Clean Bus project, funded by the NDC Support Facility, a contribution to the NDC Partnership.

Moving toward green mobility: three countries, three different paths

Nancy Vandycke's picture
A local bus in Luxembourg. Photo: Fränz Bous/Flickr
As discussions concluded at COP24, countries still struggle to translate their climate commitments into effective and socially acceptable actions. This sense of stagnation is particularly evident in transport. With 23% of energy-related GHG emissions coming from the sector, transitioning to greener mobility will be crucial to the overall success of the climate agenda. Yet the world remains largely reliant on fossil fuels to move people and goods from A to B. As shown in Sustainable Mobility for All’s Global Roadmap of Action, there are multiple policy options that could help countries move the needle on green mobility, each with their own fiscal and political costs. To illustrate this, let’s look at three countries that did take concrete measures to cut carbon emissions from transport but opted for three different options: France, Luxembourg, and Norway.
 
What these countries have in common
 
These three countries all have a high level of income, which means the majority of their residents can afford to buy and own a car. The governments of these countries have also invested heavily into road and rail systems—including France’s transformative high-speed railway network. This effort has significantly increased the number of people who have access to fast and reliable transport, and helped bridge the social divide between urban and rural areas.
 
But “universal access” is only one of the four policy goals to achieve sustainable mobility: efficiency, safety, and green mobility are equally important.  Now that the infrastructure is in place, and carbon-intensive cars and trucks are on the roads, the challenge for policy-makers is to figure out how we can reach these three other goals in a world where individual mobility has become a new “social right”.  In other words, which policies will be most effective for reducing the environmental footprint of the current mobility system (GHG emissions, noise, and air pollution)?

Time to ask the tough questions about transport and climate

Nancy Vandycke's picture
Photo: Bernard Spragg/Flickr
Last month, the Intergovernmental Panel on Climate Change drew global attention by providing fresh and overwhelming evidence about the urgency of the climate situation. According to the agency’s latest report, global temperatures will reach 1.5 degrees Celsius above pre-industrial levels within the next 12 years—unless we act now. 
 
Transport bears a huge responsibility in the current situation: the sector contributes to nearly a quarter of global energy-related greenhouse gas emissions, and 18% of all manmade emissions in the global economy.  Under a business-as-usual scenario, this figure will continue rising to reach 1/3 of all emissions by 2040.
 
This means cutting emissions from transport will be central to solving the climate equation. To kickstart this process, the Sustainable Mobility for All initiative (Sum4All) just released a preliminary Global roadmap of action towards sustainable mobility that lays out concrete policy measures for a healthier transport future. Our coalition of 55 leading public and private organizations looks at all dimensions of sustainability: safety, efficiency, equitable access, and, of course, environmental impact.
 
As global leaders head to Poland for the COP24 Climate Conference, now is a good time to identify the most effective solutions for lowering the carbon footprint of transport. In that spirit, we encourage all interested parties to provide input and feedback on SuM4All’s Roadmap of Action: Which policy interventions do you think should be prioritized? Are there any critical measures that are missing from the proposal?  How can the private sector be part of the solution?

The transition to low-carbon buses in Mexico: It’s not (only) about the money

Alejandro Hoyos Guerrero's picture
Credit: Taís Policanti/WRI
Transitioning from diesel buses to cleaner technologies can significantly contribute to tackling air pollution in cities and reducing the carbon footprint of urban transport. As alternatives to diesel are getting more and more viable, many governments and development partners are encouraging bus operators to make the switch, mostly by offering financial incentives such as example 1 or example 2.

However, after promoting cleaner buses in Mexico for five years, we have seen firsthand that financial incentives alone are not enough. Specifically, there are three main obstacles that impede the expansion of cleaner bus fleets, and should be addressed appropriately.

New technologies and risk aversion

In general, private bus operators tend to be very risk averse when it comes to experimenting with new vehicle technologies. This is not exactly surprising: according to our own calculations from different projects in Latin America, variables related to vehicle performance—like fuel and maintenance—make up over 2/3 of costs over the life cycle of a conventional diesel bus. In that context, operators who are not familiar with the performance of new vehicle technologies can understandably perceive the transition to a cleaner fleet as a huge financial gamble.

The future of transport is here. Are you ready?

Stephen Muzira's picture
Photo: Max Talbot-Minkin/Flickr
Technology is transforming transport with a speed and scale that are hard to comprehend. The transport systems of tomorrow will be connected, data-driven, shared, on-demand, electric, and highly automated. Ideas are moving swiftly from conception, research and design, testbed to early adoption, and, finally, mass acceptance. And according to projections, the pace of innovation is only going to accelerate.

Autonomous cars are expected to comprise about 25% of the global market by 2040. Flying taxis are already tested in Dubai. Cargo drones will become more economical than motorcycle delivery by 2020. Three Hyperloop systems are expected by 2021. Maglev trains are already operating in Japan, South Korea, and China, and being constructed or planned in Europe, Asia, Australia, and the USA. Blockchain technology has already been used to streamline the procedures for shipping exports, reducing the processing and handling times for key documents, increasing efficiency and reliability,

Sustainable mobility: can the world speak with one voice?

Nancy Vandycke's picture

 
The transport sector is changing at breakneck speed.
 
By 2030, global passenger traffic is set to rise by 50%, and freight volume by 70%. By 2050, we will have twice as many vehicles on the road, with most of the increase coming from emerging markets, where steady economic expansion is creating new lifestyle expectations and mobility aspirations. Mega-projects like China’s One Belt, One Road could connect more than half of the world’s population, and roughly a quarter of the goods that move around the globe by land and sea.
 
These transformations create a unique opportunity to improve the lives and livelihoods of billions of people by facilitating access to jobs, markets, and essential services such as healthcare or education.
 
But the growth of the transport sector could also come at the cost of higher fossil fuel use and greenhouse gas emissions, increasing air and noise pollution, a growing number of road fatalities, and worsening inequities in access.
 
Although these are, of course, global challenges, developing countries are disproportionately affected.
 
The vast majority of the one billion people who still don’t have access to an all-weather road live in the developing world. Although low and middle-income countries are home to only 54% of the world’s vehicles, they account for 90% of the 1.25 million road deaths occurring every year. If we don’t take action now, transport emissions from emerging markets could triple by 2050, and would make up 75% of the global total.
 
While the case for sustainable mobility is evident, the sector still lacks coherence and clear objectives. There is a way forward, but it requires pro-active cooperation between all stakeholders.
 
That’s what motivated the creation of Sustainable Mobility for All (SuM4All), a partnership between a wide range of global actors determined to speak with one voice and steer mobility in the right direction.
 
SuM4All partners include Multilateral Development Banks, United Nations Agencies, bilateral organizations, non-governmental organizations, civil society organizations, and is open to other important entities such as national governments and private companies. Together, these organizations can pool their capacity and experience to orient policymaking, turn ideas into action, and mobilize financing.

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Traffic jams, pollution, road crashes: Can technology end the woes of urban transport?

Shomik Mehndiratta's picture
Photo: Noeltock/Flickr
Will technology be the savior of urban mobility?
 
Urbanization and rising incomes have been driving rapid motorization across Asia, Africa, and Latin America. While cities are currently home to 50% of the global population, that proportion is expected to increase to 70% by 2050. At the same time, business-as-usual trends suggest we could see an additional 1 billon cars by 2050, most of which will have to squeeze into the already crowded streets of Indian, Chinese, and African cities.
 
If no action is taken, these cars threaten literally to choke tomorrow’s cities, bringing with them a host of negative consequences that would seriously undermine the overall benefits of urbanization: lowered productivity from constant congestion; local pollution and rising carbon emissions; road traffic deaths and injuries; rising inequity and social division.
 
However, after a century of relatively small incremental progress, disruptive changes in the world of automotive technology could have fundamental implications for sustainability.
 
What are these megatrends, and how can they reshape the future of urban mobility?