Syndicate content

digital innovation

Data analytics for transport planning: five lessons from the field

Tatiana Peralta Quiros's picture
Photo: Justin De La Ornellas/Flickr
When we think about what transport will look like in the future, one of the key things we know is that it will be filled and underpinned by data.

We constantly hear about the unlimited opportunities coming from the use of data. However, a looming question is yet to be answered: How do we sustainably go from data to planning? The goal of governments should not be to amass the largest amount of data, but rather “to turn data into information, and information into insight.” Those insights will help drive better planning and policy making.

Last year, as part of the Word Bank’s longstanding engagement on urban transport in Argentina, we started working with the Ministry of Transport’s Planning Department to tap the potential of data analytics for transport planning. The goal was to create a set of tools that could be deployed to collect and use data for improved transport planning.

In that context, we lead the development of a tool that derives origin-destination matrices from public transport smartcards, giving us new insight into the mobility patterns of Buenos Aires residents. The project also supported the creation of a smartphone application that collects high-resolution mobility data and can be used for citizen engagement through dynamic mobility surveys. This has helped to update the transport model in Buenos Aires city metropolitan area (AMBA).

Here are some of the lessons we learnt from that experience.

Mogadishu’s first tech hub

Roku Fukui's picture
Photo: UNSOM/Flickr
Somalia’s capital city of Mogadishu is defined by a complex mix of challenges and opportunities. Despite political and economic struggles, Somalis are innovating to break the chronic cycle of vulnerability. Supported in many cases by the international Somali diaspora, people in Mogadishu are using technology to solve problems and tap into new markets.

One initiative poised to accelerate this is the iRise Tech Hub, Mogadishu’s first innovation hub, co-founded by Awil Osman. iRise connects entrepreneurs, innovators, and startups to share ideas and collaborate on a variety of issues ranging from developing an online food delivery startup, to creating an open space for Somalis to incubate ideas. The Somali concept of Ilawadaag—roughly translated as ‘share with me’—is put into practice at iRise to help entrepreneurs get feedback and network with other innovators.

Agriculture 2.0: how the Internet of Things can revolutionize the farming sector

Hyea Won Lee's picture
Nguyen Van Khuyen (right) and To Hoai Thuong (left). Photo: Flore de Preneuf/World Bank
Last year, we showcased how Vietnamese farmers in the Mekong Delta are adapting to climate change. You met two shrimp farmers: Nguyen Van Khuyen, who lost his shrimp production due to an exceptionally dry season that made his pond too salty for raising shrimp, and To Hoai Thuong, who managed to maintain normal production levels by diluting his shrimp pond with fresh water. Now, let’s suppose Nguyen diluted his shrimp pond this year, another year with an extremely dry season. That would be a good start, but there would be other issues to contend with related to practical application. For example, when should he release fresh water and how much? How often should he check the water salinity? And what if he’s out of town?
 
Nguyen’s story illustrates some of the problems global agriculture faces, and how they unfold for farmers on the ground. Rapid population growth, dietary shifts, resource constraints, and climate change are confronting farmers who need to produce more with less. Indeed, the Food and Agriculture Organization (FAO) estimates that global food production will need to rise by 70% to meet the projected demand by 2050. Efficient management and optimized use of farm inputs such as seeds and fertilizer will be essential. However, managing these inputs efficiently is difficult without consistent and precise monitoring. For smallholder farmers, who account for 4/5 of global agricultural production from developing regions, getting the right information would help increase production gains. Unfortunately, many of them still rely on guess work, rather than data, for their farming decisions.
 
This is where agriculture can get a little help from the Internet of Things (IoT)—or internet-enabled communications between everyday objects. Through the IoT, sensors can be deployed wherever you want–on the ground, in water, or in vehicles–to collect data on target inputs such as soil moisture and crop health. The collected data are stored on a server or cloud system wirelessly, and can be easily accessed by farmers via the Internet with tablets and mobile phones. Depending on the context, farmers can choose to manually control connected devices or fully automate processes for any required actions. For example, to water crops, a farmer can deploy soil moisture sensors to automatically kickstart irrigation when the water-stress level reaches a given threshold.