Syndicate content

disaster recovery

Resilient transport investments: a climate imperative for Small Island Developing Countries

Franz Drees-Gross's picture


Transport in its many forms – from tuk-tuks in Thailand to futuristic self-driving electric cars – is ubiquitous in the lives of everyone on the planet. For that reason, it is often taken for granted – unless we are caught in congestion, or more dramatically, if the water truck fails to arrive at a drought-stricken community in Africa.

It is easy to forget that transport is a crucial part of the global economy. Overall, countries invest between $1.4 to $2.1 trillion per year in transport infrastructure to meet the world’s demand for mobility and connectivity. Efficient transport systems move goods and services, connect people to economic opportunities, and enable access to essential services like healthcare and education. Transport is a fundamental enabler to achieving almost all the Sustainable Development Goals (SDGs), and is crucial to meet the objectives under the Paris agreement of limiting global warming to less than 2°C by 2100, and make best efforts to limit warming to 1.5°C.

But all of this depends on well-functioning transport systems. With the effects of climate change, in many countries this assumption is becoming less of a given. The impact of extreme natural events on transport—itself a major contributor to greenhouse gas emissions—often serve as an abrupt reminder of how central it is, both for urgent response needs such as evacuating people and getting emergency services where they are needed, but also for longer term economic recovery, often impaired by destroyed infrastructure and lost livelihoods. A country that loses its transport infrastructure cannot respond effectively to climate change impacts.

How to protect metro systems against natural hazards? Countries look to Japan for answers

Sofía Guerrero Gámez's picture
Photo: Evan Blaser/Flickr
The concentration of population in cities and their exposure to seismic hazards constitute one of the greatest disaster risks facing Peru and Ecuador. In 2007, a magnitude 8.0 earthquake along the southern coast of Peru claimed the lives of 520 people and destroyed countless buildings. The most recent earthquake in Ecuador, in 2016, left more than 200 dead and many others injured.
 
Of course, these risks are not exclusive to Latin America. Considered one of the most earthquake-prone countries in the world, Japan has developed unparalleled experience in seismic resilience. The transport sector has been an integral part of the way the country manages earthquake risk— which makes perfect sense when you consider the potential consequences of a seismic event on transport infrastructure, operations, and passenger safety.

Resilience in urban transport: what have we learned from Super Storm Sandy and the New York City Subway?

Ramiro Alberto Ríos's picture
Photo: Stefan Georgi/Flickr
Back in 2012, a storm surge triggered by Super Storm Sandy caused extensive damage across the New York City (NYC)-New Jersey (NJ) Metropolitan Area, and wreaked havoc on the city’s urban rail system.

As reported by the Metropolitan Transportation Authority (MTA), the subway suffered at least $5 billion worth of damage to stations, tunnels and electrical/signaling systems. The Port Authority Trans-Hudson network (PATH) connecting NYC to NJ was also severely affected, with losses valued at approximately $871 million, including 85 rail cars damaged.

In the face of adversity, various public institutions in charge of urban rail operations are leading the way to repair damaged infrastructure (“fix”), protect assets from future similar disasters (“fortify”), restore services to millions of commuters and rethink the standards for future investments.

NYC and NJ believe that disasters will only become more frequent and intense. Their experience provides some valuable lessons for cities around the world on how to respond to disasters and prepare urban rail systems to cope with a changing climate.

Cat DDOs: More than emergency lending for disaster relief

Ede Ijjasz-Vasquez's picture
Disasters can strike anywhere and anytime. As climate change intensifies, extreme weather events, for example, are on the rise around the world, and countries are increasingly seeking to improve both their physical and financial resilience to all kind of disasters. An important dimension of sustainability in urban and rural areas is resilience–resilience for the natural disasters of today and those of tomorrow.   

One way to better prepare for disasters is securing access to financial resources before a disaster strikes through financial instruments such as the Cat DDO. 

Cat DDO stands for “Catastrophe Deferred Drawdown Option.” It is an innovative contingent line of credit that can provide immediate liquidity to countries in the aftermath of a disaster resulting from an adverse natural event. The World Bank has made it available to countries since 2008, to make it possible for them to have quick access to financial resources upon the declaration of state of emergency in the aftermath of a disaster, following an adverse natural event and in accordance with local legislation. The funds that provide liquidity to the countries are preapproved based on a sound disaster risk management program and an adequate macroeconomic framework. 

[Read: Disasters, funds, and policy: Creatively meeting urgent needs and long-term policy goals]

Why are Cat DDOs an important disaster risk financing instrument for countries?
  • It serves as an early financing tool while funds from other sources such as government reallocations, bilateral aid, or reconstruction loans/credits become available.
  • It allows the countries to address the emergency without distracting resources from their social and development programs.
  • It enhances the countries’ financial capacity to prepare for disasters.
  • It also generates or consolidates a dialogue on disaster risk management between the countries and the World Bank to learn from experience and apply good practices.

What are some of the examples of “Cat DDOs in action”? How will this innovative tool evolve to better manage increasing disaster risks? Watch a video with World Bank Senior Director Ede Ijjasz-Vasquez (@Ede_WBG) and Senior Disaster Risk Management Specialist Armando Guzman to learn more. 


 

What El Niño has taught us about infrastructure resilience

Irene Portabales González's picture
Also available in: Español
Photo: Ministerio de Defensa del Perú/Flickr
The rains in northern Peru have been 10 times stronger than usual this year, leading to floods, landslides and a declaration of a state of emergency in 10 regions in the country. Together with the human and economic toll, these downpours have inflicted tremendous damage to transport infrastructure with added and serious consequences on people’s lives.

These heavy rains are blamed on El Niño, a natural phenomenon characterized by an unusual warming of the sea surface temperature in the central and eastern equatorial Pacific Ocean. This phenomenon occurs every two to seven years, and lasts about 18 months at a time. El Niño significantly disrupts precipitation and wind patterns, giving rise to extreme weather events around the planet.

In Peru, this translates into rising temperatures along the north coast and intense rainfall, typically shortly before Christmas. That’s also when “huaicos” appear. “Huaico,” a word that comes from the Quechua language (wayq’u), refers to the enormous masses of mud and rocks carried by torrential rains from the Andes into rivers, causing them to overflow. These mudslides result from a combination of several natural factors including heavy rains, steep slopes, scarce vegetation, to name a few. But human factors also come into play and exacerbate their impact. That includes, in particular, the construction of human settlements in flood-prone basins or the absence of a comprehensive approach to disaster risk management.

This year’s floods are said to be comparable to those caused by El Niño in 1997-1998, one of the largest natural disasters in recent history, which claimed the lives of 374 people and caused US$1.2 billion worth of damages (data provided by the Peruvian National Institute of Civil Defense).

Using ICTs to Map the Future of Humanitarian Aid (part 2)

Dana Rawls's picture
Satellite image and analysis of damage caused by Tropical Cyclone Evan in Samoa. Credit: UNITAR-UNOSAT

With crisis mapping’s increasing profile, other organizations have joined the fray. Just this month, Facebook announced that it was partnering with UNICEF, the World Food Programme, and other partners to “share real-time data to help respond after natural disasters,” and the United Nations has also contributed to the field with its Office for the Coordination of Humanitarian Affairs (OCHA) founding MicroMappers along with Meier, as well as creating UNOSAT, the UN Operational Satellite Applications Programme of the United Nations Institute for Training and Research.

In a 2013 interview, UNOSAT Manager Dr. Einar Bjorgo described the work of his office.

“When a disaster strikes, the humanitarian community typically calls on UNOSAT to provide analysis of satellite imagery over the affected area… to have an updated global view of the situation on the ground. How many buildings have been destroyed after an earthquake and what access roads are available for providing emergency relief to the affected population? We get these answers by requiring the satellites to take new pictures and comparing them to pre-disaster imagery held in the archives to assess the situation objectively and efficiently.”

Four years later, UNOSAT’s work seems to have become even more important and has evolved from the early days when the group used mostly freely available imagery and only did maps.

Using ICTs to Map the Future of Humanitarian Aid (part 1)

Dana Rawls's picture
Haiti map after the 2010 earthquake. Over 450 OpenStreetMap volunteers from an estimated 29 countries digitized roads, landmarks and buildings to assist with disaster response and reconstruction. OpenStreetMap/ITO World

The word “disruption” is frequently used to describe technology’s impact on every facet of human existence, including how people travel, learn, and even speak.

Now a growing cadre of digital humanitarians and technology enthusiasts are applying this disruption to the way humanitarian aid and disaster response are administered and monitored.

Humanitarian, or crisis, mapping refers to the real-time gathering and analysis of data during a crisis. Mapping projects allows people directly affected by humanitarian crises or physically located on the other side of the world to contribute information utilizing ICTs as diverse as mobile and web-based applications, aggregated data from social media, aerial and satellite imagery, and geospatial platforms such as geographic information systems (GIS).

New project uses satellites for rapid assessment of flood response costs

Antoine Bavandi's picture

High-risk areas for natural disasters are home to 5 billion out of the 7 billion total people on our planet.

Overall global losses from natural disasters such as floods, landslides or earthquakes amount to about $300 billion annually. A rapid and early response is key to immediately address the loss of human life, property, infrastructure and business activity.

Severe flooding occurred during the 2011 monsoon season in Thailand, resulting in more than 800 deaths. About 14 million people were affected, mostly in the northern region and in the Bangkok metropolitan area.

After such natural disasters, it is important that governments rapidly address recovery efforts and manage the financial aspects of the disaster’s impacts. Natural disasters can cause fiscal volatility for national governments because of sudden, unexpected expenditures required during and after an event.

This is especially critical in emerging-market economies, such as those in Southeast Asia, which have chronic exposure to natural disasters. To conserve and sustain development gains and analyze societal and financial risks at a national or regional scale, it is also critical to understand the impacts of these disasters and their implications at the socioeconomic, institutional and environmental level.
 
New project to monitor and evaluate flood severity

Financed by the Rockefeller Foundation, this World Bank Group’s Disaster Risk Financing and Insurance Program (DRFIP) and Columbia University’s Earth Institute joint project aims to define an operational framework for the rapid assessment of flood response costs on a national scale.  Bangladesh and Thailand serve as the initial demonstration cases, which will be expanded to other Southeast Asian countries such as Cambodia, Lao PDR, Myanmar and Vietnam.

The “plastic bridge”: a low-cost, high-impact solution to address climate risk

Oliver Whalley's picture
Also available in: Français
Photo: Anthony Doudt/Flickr
Bridges are critical links in the transport network. In their position across waterways, they are exposed to the full effects of flooding and landslides, and are often the first pieces of infrastructure to be damaged in the event of a disaster. They also typically take weeks or months to repair.  Besides causing expensive damage to the infrastructure itself, disruptions in connectivity also have a much broader impact on economic productivity and people’s ability to access essential services. As many places are expected to witness more intense and frequent rainfall as a result of climate change, the risk to bridges will only worsen: more rainfall will lead to bigger river flows and more damage to bridges, especially those designed to handle smaller storms.

At each end of a bridges is a structure which supports the weight of the deck. These are known as abutments, and they are often the first part of the bridge to fail. Blockage of the main channel by debris can cause water to look for the path of least resistance around the sides of the bridges, thus placing the abutments at risk.

Traditional bridge construction requires the installation of piles for the foundations of abutments—a lengthy and expensive process that involves specialist materials, skills and equipment.

But there is another promising solution: Geosynthetic Reinforced Soil (GRS) abutments. These allow for rapid and resilient construction of bridge abutments using locally available materials, without specialized equipment. With GRS, bridges can be constructed in as little as five days (Von Handorf, 2013) and at a cost 30-50% lower than traditional approaches (Tonkin and Taylor, 2016) .

GRS abutments are based on ‘geogrids,’ a high density mesh made out of polyethylene (plastic). Layers of soil and geogrid are combined to create a solid foundation for the bridge deck. Construction can be completed with basic earthmoving and compaction equipment, and a range of local fill materials can be used with guidance from geotechnical specialists.

On the road to resilience: Reducing disaster and climate risk in Africa

Ede Ijjasz-Vasquez's picture
As 60 million people in Africa await humanitarian assistance due to the worst El Nino in decades, the World Bank is actively engaged in 14 countries to plan recovery programs worth more than $500 million. (Photo: Flore de Preneuf / World Bank)


Natural disasters—such as droughts, floods, landslides, and storms—are a regular occurrence, but climate change is increasing the frequency and intensity of such weather-related hazards. Since 1970, Africa has experienced more than 2,000 natural disasters, with just under half taking place in the last decade. During this time, natural disasters have affected over 460 million people and resulted in more than 880,000 casualties. In addition, it is estimated that by 2030, up to 118 million extremely poor people (living below $1.25/day) will be exposed to drought, floods, and extreme heat in Africa. In areas of recurrent disasters, this hampers growth and makes it harder for the poor to escape poverty.


Pages