Syndicate content

December 2017

Innovation in the air: using cable cars for urban transport

Leonardo Canon Rubiano's picture
Also available in: Español
Photo: Andy Shuai Liu/World Bank

Invented over a century ago for exploring mountainous regions, aerial cable cars have recently made an appearance in several big cities, where they are being used as an alternative to conventional urban transport modes. This technology uses electrically-propelled steel cables to move suspended cars (or cabins) between terminals at different elevation points.
 
The tipping point. The emergence of cable cars in urban transport is fairly new. Medellín, Colombia pioneered the use of cable cars for urban transport when it opened its first “Metrocable” line in 2004. Since then, urban cable cars have grown in popularity around the world, with recent projects in Latin America (Rio de Janeiro, Caracas, Guayaquil, Santo Domingo, La Paz, and Medellín), Asia (Yeosu, South Korea, Taiwan, Hong Kong), Africa (Lagos, Constantine), and Europe (London, Koblenz, Bolzano).  Cable cars can be an attractive urban transport solution to connect communities together when geographical barriers such as hills and rivers make other modes infeasible.

Africa is paving the way to a climate-resilient future

Tara Shirvani's picture


Since the presentation of the World Bank’s first Africa Climate Business Plan at the COP 21 in Paris in 2015 and the Transport Chapter in Marrakech in 2016, a lot of progress has been made on integrating climate adaptation and mitigation into our transport projects.

The World Bank initially committed about $3.2 billion toward mainstreaming climate action into transport programs in Sub-Saharan Africa in the form of infrastructure investments and technical assistance. Following the Paris Agreement, and building on African countries’ Nationally Determined Contributions (NDCs), the size of this portfolio grew to $5 billion for 2016 to 2020.  In 2017, the institution added another $1.9 billion to that amount, bringing the total to $6.9 billion in projects with climate co-benefits— more than twice the size of the original portfolio. These investments will help improve the resilience of transport infrastructure to climate change and improve the carbon footprint of transport systems.
 
Climate change has already started to affect African countries’ efforts to provide better transport services to their citizens.  African transport systems are vulnerable to multiple types of climate impact: sea level rise and storm surge, higher frequency and intensity of extreme wind and storm events, increased precipitation intensity, extreme heat and fire hazard, overall warming, and change in average precipitation patterns. The increased frequency and intensity of extreme climate event challenges the year-round availability of critical transport services: roads are damaged more often or are more costly to maintain; expensive infrastructure assets such as ports, railways or airports can be damaged by storms and storm surges, resulting in a short  life cycle and capacity than they were originally designed for. Critical infrastructure such as bridges continue to be built based on data and disaster risk patterns from decades ago, ignoring the current trend of increased climate risk. For Sub-Saharan Africa alone, it is estimated that climate change will threaten to increase road maintenance costs by 270% if no action is taken.

Three reasons why maritime transport must act on climate change

Nancy Vandycke's picture


For years, the transport sector has been looking at solutions to reduce its carbon footprint. A wide range of stakeholders has taken part in the public debate on transport and climate change, yet one mode has remained largely absent from the conversation: maritime transport.

Tackling emissions from the shipping industry is just as critical as it is for other modes of transport. First, international maritime transport accounts for the lion’s share of global freight transport: ships carry around 80% of the volume of all world trade and 70% of its value. In addition, although shipping is considered the most energy-efficient mode of transport, it still uses huge amounts of so-called bunker fuels, a byproduct of crude oil refining that takes a heavy toll on the environment.

Several key global players are now calling on the maritime sector to challenge the status quo and limit its climate impact. From our perspective, we see at least three major reasons that can explain why emissions from maritime transport are becoming a global priority.