Syndicate content

transport infrastructure

Want successful urban transport mega-projects? Here are seven things you should keep in mind

Bianca Bianchi Alves's picture


In 2002, Sao Paulo’s embarked in one of the most transformative transport projects of the decade: the construction of Metro Line 4. The new line had big ambitions: it was meant to significantly improve the commuting experience, better connect the south and western regions of the Sao Paulo Metropolitan Region (SPMR) to the center, change the metro system from a radial to a flexible network, and interconnect all transport modes, including buses, suburban trains (CPTM), bicycles, as well as existing and future metro lines.

Line 4 was also the first metro project in Brazil to be designed as a Public-Private Partnership, whereby operation and maintenance (O&M) was concessioned to a private company for 30 years. The project was segmented into 2 construction phases, both of which were technically and financially supported by the World Bank from 2002.

When finished, Metro Line 4 will feature a total of 11 stations along a 14.4-km alignment, 29 trains in operation, four integrated bus terminals, and one dedicated train yard. It will carry nearly 1 million passengers per day. Since the opening of the first segment in 2010, the line has experienced high passenger traffic and allowed for a significant reduction in journey times. In 2012, Line 4 even featured among the 100 most innovative infrastructure projects in the world.

A new station was inaugurated just a few weeks ago, and the line is now just one station away from completion. Once the whole project is operational by 2020, aha resident of Vila Sonia in the western part of the city will need only 20 minutes to reach Luz station at the opposite side of the city, compared to one hour in 2002.Today they can already reach it in 32 minutes!

Now that the Line 4 odyssey has almost concluded, it can teach us a number of valuable lessons about what it takes to implement such complex infrastructure projects in a dense urban area like Sao Paulo.

How can Indonesia achieve a more sustainable transport system?

Tomás Herrero Diez's picture
Photo: UN Women/Flickr
Indonesia, a vast archipelago of more than 17,500 islands, is the fourth most populous country in the world, with 261 million inhabitants, and the largest economy in Southeast Asia, with a nominal Gross Domestic Product of $933 billion.

Central government spending on transport increased by threefold between 2010-2016. This has enabled the country to extend its transport network capacity and improve access to some of the most remote areas across the archipelago.

The country has a road network of about 538,000 km, of which about 47,000 km are national roads, and 1,000 km are expressways. Heavy congestion and low traffic speeds translate into excessively long journey times. In fact, traveling a mere 100 km can take 2.5 to 4 hours. The country relies heavily on waterborne transport and has about 1,500 ports, with most facilities approaching their capacity limits, especially in Eastern Indonesia. Connectivity between ports and land infrastructure is limited or non-existent. The rail network is limited (6,500 km across the islands of Java and Sumatra) and poorly maintained. The country’s 39 international and 191 domestic airports mainly provide passenger services, and many are also reaching their capacity limits.

Why sustainable mobility matters

Hartwig Schafer's picture
Photo: Mariana Gil/WRI
In the 1960s, the vision of future mobility was people with jet packs and flying cars – we believed these innovations wouldn’t be far off after the moon landing in 1969. Obviously, the reality in 2017 is somewhat different.

Today, we have congestion in cities, rural areas cut off from the rest of the world, and too many people without access to safe, efficient, and green transport. This stifles markets and hinders people from the jobs that will help them escape poverty. Without access to sustainable mobility, it will be much harder—if not impossible— to end poverty and achieve the Sustainable Development Goals (SDGs).

And perhaps the most tragic reality is this: that approximately 1.3 million people die each year in traffic-related incidents. Young people, those between the ages of 15-29, are the most affected by road crashes. This heartbreaking and preventable loss of life should be a clear signal that road safety matters.

At the same time, how we change transport is vitally important and will impact generations to come.

The “plastic bridge”: a low-cost, high-impact solution to address climate risk

Oliver Whalley's picture
Also available in: Français
Photo: Anthony Doudt/Flickr
Bridges are critical links in the transport network. In their position across waterways, they are exposed to the full effects of flooding and landslides, and are often the first pieces of infrastructure to be damaged in the event of a disaster. They also typically take weeks or months to repair.  Besides causing expensive damage to the infrastructure itself, disruptions in connectivity also have a much broader impact on economic productivity and people’s ability to access essential services. As many places are expected to witness more intense and frequent rainfall as a result of climate change, the risk to bridges will only worsen: more rainfall will lead to bigger river flows and more damage to bridges, especially those designed to handle smaller storms.

At each end of a bridges is a structure which supports the weight of the deck. These are known as abutments, and they are often the first part of the bridge to fail. Blockage of the main channel by debris can cause water to look for the path of least resistance around the sides of the bridges, thus placing the abutments at risk.

Traditional bridge construction requires the installation of piles for the foundations of abutments—a lengthy and expensive process that involves specialist materials, skills and equipment.

But there is another promising solution: Geosynthetic Reinforced Soil (GRS) abutments. These allow for rapid and resilient construction of bridge abutments using locally available materials, without specialized equipment. With GRS, bridges can be constructed in as little as five days (Von Handorf, 2013) and at a cost 30-50% lower than traditional approaches (Tonkin and Taylor, 2016) .

GRS abutments are based on ‘geogrids,’ a high density mesh made out of polyethylene (plastic). Layers of soil and geogrid are combined to create a solid foundation for the bridge deck. Construction can be completed with basic earthmoving and compaction equipment, and a range of local fill materials can be used with guidance from geotechnical specialists.

Building Metros in Latin America: Not all projects are created equal, but they all need strong institutions

Daniel Pulido's picture
Follow the author on Twitter: @danpulido
 

Construction of the Quito Metro
Representatives from international and local commercial and development banks convened in Bogota, Colombia at the end of March for the Second International Workshop to discuss the First Line of the Bogota Metro. Bogota is currently undertaking the engineering studies required to develop the metro project but the key question remains:  how to develop it in a manner that reduces costs, mitigates risks and maximizes benefits for users? Together with other Bank colleagues, I was invited to the workshop to discuss the procurement and financing models adopted in other urban rail projects in Latin America (see workshop presentations here). My main take away from the discussions is that although there is no such thing as a single recipe for success, there is one widely recognized essential ingredient: strong government institutions with the sufficient managerial and technical capacity to prepare, manage and supervise these complex projects.

Where is our road? Taking Politics out of Regional Transport Infrastructure Planning

Charles Kunaka's picture

Africa’s infrastructure deficit is no secret. Several recent studies by the World Bank and others have confirmed that across the continent, roads are inadequate, railways in poor condition and waterways limited. While the problems are most obvious at the national level, they are more acute along routes connecting countries. Lack of resources contributes to the patchy state of infrastructure connectivity between African countries.  But it is not the only hurdle. A key question is: given limited resources, how should infrastructure be planned, prioritized and financed?

Sixteen countries in Sub-Saharan Africa are landlocked. To trade goods in overseas markets, they must cooperate with their coastal neighbors, working together to plan roads, transport goods to port and keep borders open. This is harder than it sounds. While numerous regional organizations exist to coordinate infrastructure planning in Africa, in practice they are made up of representatives with interests rooted in their own countries. Decisions by these bodies are often political and driven by members’ desire to see projects in their home territories.

 

Road safety is everyone's responsibility. Mine too.

Said Dahdah's picture

Here is a quiz question for you: "You are driving on a highway and you suddenly realize that you just missed the intended exit ramp. What would you do?"  Most people would hopefully say “Go to the next exit ramp.” However, as we recently found out, 12% of truck drivers in China said: “Back up or turn-around to the missed exit ramp.”