Syndicate content

Energy

How far are we on the road to sustainable mobility?

Nancy Vandycke's picture
You can now download the full report and explore the main findings on sum4all.org
The answer, unfortunately, is not very. The world is off track to achieving sustainable mobility. The demand for moving people and goods across the globe is increasingly met at the expense of future generations.
 
That is the verdict of the Global Mobility Report (GMR)—the first ever assessment of the global transport sector and the progress made toward achieving sustainable mobility.
 
This is the first major output of the Sustainable Mobility for All initiative (SuM4All), a global, multi-stakeholder partnership proposed last year at the United Nations (UN) Climate Action Summit with the purpose of realizing a future where mobility is sustainable. The release of this study puts a sector often overlooked by the international community squarely on the map as essential to address inclusion, health, climate change and global integration.
 
The report defines sustainable mobility in terms of four goals: universal access, efficiency, safety, and green mobility. If sustainable mobility is to be achieved, these four goals need to be pursued simultaneously.

E-commerce is booming. What’s in it for urban transport?

Bianca Bianchi Alves's picture
Também disponível em: Português
 

Worldwide, e-commerce has experienced explosive growth over the past decade, including in developing countries. The 2015 Global Retail E-Commerce Index ranks several of the World Bank’s client countries among the 30 most important markets for e-commerce (China ranks 2nd, Mexico 17th, Chile 19th, Brazil 21st, and Argentina 29th). As shown in a 2017 report from Ipsos, China, India, and Indonesia are among the 10 countries with the highest frequency of online shopping in the world, among online shoppers. Although growth in e-commerce in these countries is sometimes hindered by structural deficiencies, such as limitations of banking systems, digital payment systems, secure IT networks, or transport infrastructure, the upcoming technological advances in mobile phones and payment and location systems will trigger another wave of growth. This growth will likely lead to more deliveries and an increase in freight volume in urban areas.

In this context, the Bank has been working with the cities of Sao Paulo and Bangalore to develop a new tool that helps evaluate how different transport policies and interventions can impact e-commerce logistics in urban areas (GiULia). Financed by the Multidonor Sustainable Logistics Trust Fund, the tool serves as a platform to promote discussion with our counterparts on a subject that is often neglected by city planners: urban logistics. Decision-making on policies and regulations for urban logistics has traditionally been undertaken without sufficient consideration for economic and environmental impacts. For instance, restrictions on the size and use of trucks in cities can cause a number of side effects, including the suburbanization of cargo, with warehouses and trucks located on the periphery of cities, far from consumers, or the fragmentation of services between multiple carriers, which may lead to more miles traveled, idle truck loads, and inefficiencies.

Motorization and its discontents

Roger Gorham's picture
Photo: Sarah Farat/World Bank
They say a picture is worth a thousand words.  While visiting the World Bank library the other day, I was struck by how many development publications featured pictures of motor vehicles on their covers, even though most of them covered topics that had little to do with transport.  The setting and tone of the pictures varied – sometimes they showed a lone car on a rural highway, sometimes congested vehicles in urban traffic, and sometimes a car displayed proudly as a status symbol – but the prevalence of motorized vehicles as a visual metaphor for development was unmistakable to me: in the public imagination, consciously or otherwise, many people associate development with more use of motorized vehicles.

Indeed, motorization – the process of adopting and using motor vehicles as a core part of economic and daily life – is closely linked with other dimensions of development such as urbanization and industrialization.

Motorization, however, is a double-edged sword.

For many households, being able to afford their own vehicle is often perceived as the key to accessing more jobs, more services, more opportunities—not to mention a status symbol. Likewise, vehicles can unlock possibilities for firms and individual entrepreneurs such as the young man from Uganda pictured on the right, proudly showing off his brand new boda boda (motorcycle taxi). 

But motorization also comes with a serious downside, in terms of challenges that many governments have difficulty managing.  Motor vehicles can undermine the livability of cities by cluttering up roads and open spaces—the scene of chaos and gridlock in the picture below, from Accra, is a telling example. In addition, vehicles create significant safety hazards for occupants and bystanders alike… in many developing countries, road deaths have effectively reached epidemic proportions. From an environmental standpoint, motorized transport is, of course, a major contributor to urban air pollution and greenhouse gas emissions. Lastly, motorization contributes to countries' hard currency challenges by exacerbating their long-term demand for petroleum products.

Given these challenges, how are developing countries going to align their motorization trajectories with their development goals?  What should the World Bank advise our clients about how to manage this process?

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Traffic jams, pollution, road crashes: Can technology end the woes of urban transport?

Shomik Mehndiratta's picture
Photo: Noeltock/Flickr
Will technology be the savior of urban mobility?
 
Urbanization and rising incomes have been driving rapid motorization across Asia, Africa, and Latin America. While cities are currently home to 50% of the global population, that proportion is expected to increase to 70% by 2050. At the same time, business-as-usual trends suggest we could see an additional 1 billon cars by 2050, most of which will have to squeeze into the already crowded streets of Indian, Chinese, and African cities.
 
If no action is taken, these cars threaten literally to choke tomorrow’s cities, bringing with them a host of negative consequences that would seriously undermine the overall benefits of urbanization: lowered productivity from constant congestion; local pollution and rising carbon emissions; road traffic deaths and injuries; rising inequity and social division.
 
However, after a century of relatively small incremental progress, disruptive changes in the world of automotive technology could have fundamental implications for sustainability.
 
What are these megatrends, and how can they reshape the future of urban mobility?

Getting a global initiative off the ground: What can transport learn from energy?

Nancy Vandycke's picture

In May last year, key stakeholders joined the World Bank Group in calling for global and more concerted action to address the climate impact of transport while ensuring mobility for everyone. More recently, the Secretary-General’s High-Level Advisory Group on Sustainable Transport noted, in its final recommendations to Ban Ki-Moon, emphasized the need for “coalitions or partnership networks” to “strengthen coherence” for scaling up sustainable transport, as well as establishing monitoring and evaluation frameworks. These issues have been raised at Habitat III, COP22 and at the Global Sustainable Transport Conference in Ashgabat.
 
As the global community readies itself to move from commitments to implementation, what can transport learn from similar initiatives in other sectors, such as Sustainable Energy for All (SE4All)?

Transforming Transportation: Toward Sustainable Mobility for All

Jose Luis Irigoyen's picture


To learn more about the future of sustainable mobility, don't miss Transforming Transportation 2017 on January 12-13. Click here to watch the event live and submit your questions to our experts.

 
From taxi apps to car sharing, from buses to the metro, from bike sharing to walking, not to mention personal cars, there are more transportation choices than ever before for that staple of modern life: the daily commute. The same goes for the transport of goods, which can get from A to B by road, air, rail, waterways and soon drones. There are currently more than 12,600 km (nearly 8000 miles) of metro or urban rail and 5,400 km (3,300 miles) of bus rapid transit (BRT), collectively providing 154 million trips a day in 250 cities. Increased access to transport and enhanced connectivity decreases travel time and generates higher rates of direct employment, keys to elevating overall economic opportunity. 

That’s the good news. The bad news is that the increase in mobility options comes at a high price. The challenges associated with growing traffic, especially in cities, are significant and threaten to become insurmountable. And despite the wide range of ways to get around, there have never been so many people who lack access to transportation or the means to use transportation.

Follow the moving carbon: A strategy to mitigate emissions from transport

Shomik Mehndiratta's picture


To learn more about the future of sustainable mobility, don't miss Transforming Transportation 2017 on January 12-13. Click here to watch the event live and submit your questions to our experts.

 
Transport currently accounts for 23% of energy-related carbon emissions--equivalent to 7.3 gigatons of CO2 globally in 2013—and, unfortunately, ranks among the fastest growing sources of such emissions.

If we’re serious about bucking the trend and reducing the environmental footprint of the sector, we first need to understand where transport emissions come from, and how they will evolve. If you take out the 1 GT of CO2 emissions released by the aviation and maritime industry for international transport, about 6 GT of transport emissions are classified as “domestically generated.” Today, the share of domestically generated emissions is split pretty much evenly between developed and developing countries: high-income OECD countries account for about 3 GT, while non-OECD countries are responsible for another 3 GT.

However, under a business-as-usual scenario, this breakdown is expected to change dramatically. Without bold action to make transport greener, emissions from emerging markets are poised to grow threefold by 2050, and would then make some 75% of the global total. Domestically generated emissions from OECD countries, in comparison, should rise by a more modest 17%.

The share of each mode in overall transport emissions also differs depending on which part of the world you’re looking at: while 2/3 of emissions in OECD countries are from cars, freight and particularly trucking is currently more important in the context of emerging markets.  Trucks actually generate over 40% of transport emissions in China, India Latin America and Africa.

Climate-smart transport is a key piece of the sustainable development puzzle

Jose Luis Irigoyen's picture

Also available in: Español | Français | 中文

The modern tramway system in Rabat Salé, Morocco. Photo: LukaKikina/Shutterstock
When it comes to climate change, the transport sector is both a victim and a perpetrator. On the one hand, transport infrastructure is particularly vulnerable to the effects of climate change such as higher temperatures, increased precipitations, and flooding. At the same time, transport is responsible for 23% of energy-related greenhouse gas (GHG) emissions, and is one of the sectors where emissions are rising the fastest. This statistic alone makes it pretty clear that there will be no significant progress on climate action without greener, more sustainable mobility.

Yet, before COP21, the transport sector was conspicuously absent from climate talks. The strong, structured presence we saw last year in Paris and this year in Marrakech is finally commensurate with the urgency needed to address the transport-related issues on the climate agenda.

The rising importance of transport in the global conversation is reflected in major commitments like the Sustainable Development Goals (SDGs) and the Paris Agreement. As an example, over 70% of the Nationally Determined Contributions (NDCs) that countries have proposed to implement the Paris Agreement include transport commitments, ranging from increasing public transport in cities to shifting freight from roads to railways and waterways.

First-ever Global Conference on Sustainable Transport: What is at stake?

Nancy Vandycke's picture

On November 26, 2016, UN Secretary-General Ban-Ki Moon will convene the first-ever Global Conference on Sustainable Transport, in Ashgabat, Turkmenistan. What is at stake in this capstone two-day event? What fresh developments might it yield, and how might it change the dynamics for transport?
 
The new transport agenda. A number of earlier high-level events—including the UN Climate Action Summit, the OECD/International Transport Forum, and the Habitat III Conference—helped give a long-needed boost to the visibility of transport in the international arena in 2016. The events also helped position transport within the current set of global commitments that include the Sustainable Development Goals, the Paris climate agreement, the Decade of Action on Road Safety, and the Habitat III New Urban Agenda. The forthcoming Ashgabat event will put front and center one simple notion: for the next 15 years, the transport agenda will be framed by that set of global commitments. The commitments define the space within which governments, international organizations, the private sector, and civil society will have to act on transport. And they will dictate the future size and direction of transport funding.
 
This is a paradigm shift. Previously, the transport agenda was defined by the goal of providing access to transport infrastructure. Under the new framework, the international community has committed itself to much more. First, the issue is no longer simply access but equitable access for all. Second, other, equally important objectives have been added, including the efficiency and reliability of mobility services, transport safety, and decarbonization. In sum, the internationally accepted transport agenda concerns more than economic and social development; it is also about being part of the climate change solution.

Pages