Syndicate content

electric vehicles

Sustainable mobility: can the world speak with one voice?

Nancy Vandycke's picture

 
The transport sector is changing at breakneck speed.
 
By 2030, global passenger traffic is set to rise by 50%, and freight volume by 70%. By 2050, we will have twice as many vehicles on the road, with most of the increase coming from emerging markets, where steady economic expansion is creating new lifestyle expectations and mobility aspirations. Mega-projects like China’s One Belt, One Road could connect more than half of the world’s population, and roughly a quarter of the goods that move around the globe by land and sea.
 
These transformations create a unique opportunity to improve the lives and livelihoods of billions of people by facilitating access to jobs, markets, and essential services such as healthcare or education.
 
But the growth of the transport sector could also come at the cost of higher fossil fuel use and greenhouse gas emissions, increasing air and noise pollution, a growing number of road fatalities, and worsening inequities in access.
 
Although these are, of course, global challenges, developing countries are disproportionately affected.
 
The vast majority of the one billion people who still don’t have access to an all-weather road live in the developing world. Although low and middle-income countries are home to only 54% of the world’s vehicles, they account for 90% of the 1.25 million road deaths occurring every year. If we don’t take action now, transport emissions from emerging markets could triple by 2050, and would make up 75% of the global total.
 
While the case for sustainable mobility is evident, the sector still lacks coherence and clear objectives. There is a way forward, but it requires pro-active cooperation between all stakeholders.
 
That’s what motivated the creation of Sustainable Mobility for All (SuM4All), a partnership between a wide range of global actors determined to speak with one voice and steer mobility in the right direction.
 
SuM4All partners include Multilateral Development Banks, United Nations Agencies, bilateral organizations, non-governmental organizations, civil society organizations, and is open to other important entities such as national governments and private companies. Together, these organizations can pool their capacity and experience to orient policymaking, turn ideas into action, and mobilize financing.

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Traffic jams, pollution, road crashes: Can technology end the woes of urban transport?

Shomik Mehndiratta's picture
Photo: Noeltock/Flickr
Will technology be the savior of urban mobility?
 
Urbanization and rising incomes have been driving rapid motorization across Asia, Africa, and Latin America. While cities are currently home to 50% of the global population, that proportion is expected to increase to 70% by 2050. At the same time, business-as-usual trends suggest we could see an additional 1 billon cars by 2050, most of which will have to squeeze into the already crowded streets of Indian, Chinese, and African cities.
 
If no action is taken, these cars threaten literally to choke tomorrow’s cities, bringing with them a host of negative consequences that would seriously undermine the overall benefits of urbanization: lowered productivity from constant congestion; local pollution and rising carbon emissions; road traffic deaths and injuries; rising inequity and social division.
 
However, after a century of relatively small incremental progress, disruptive changes in the world of automotive technology could have fundamental implications for sustainability.
 
What are these megatrends, and how can they reshape the future of urban mobility?