Syndicate content

Latin America & Caribbean

What connectivity means for Brazil’s youngest state

Martin Raiser's picture

All photos by Gregoire Gauthier and Satoshi Ogita

Marcos Ribeiro almost has tears in his eyes, as he explains the huge opportunities he sees for modern, ecologically mindful agriculture to us, a visiting World Bank team. The young tropical fruit producer is standing in front of his small farm, some 15 km outside of Palmas, the capital of Tocantins, Brazil’s youngest state.

How teaching with the test (not to the test) improves learning

Rafael de Hoyos's picture

“Test and punish”?

There’s a debate raging in American schools today: how (and how much) should children be tested?

The No Child Left Behind (NCLB) Act created a system where all children in all schools from grades 3 to 8 must be tested each year. Critics refer to this accountability architecture as “test and punish,” with stakes such as school funding (or closings!), bonuses for teachers, or grade promotion for students all riding on performance. There is evidence that NCLB improved learning outcomes, but improvements came at a high cost: In addition to teaching to the test, this approach can lead to a number of perverse incentives, like keeping weaker students at home on test day, narrowing the curriculum, or downright cheating. Worse, some have said they can serve to mask and contribute to the structural race and class inequalities in the United States.

Accelerating and learning from innovations in youth employment projects

Namita Datta's picture
Rapid progress in digital technology, behavioral economics, evaluation methods, and the connectivity of youth in the developing world generates a stream of real-time insights and opportunities in project design and implementation. (Photo: Arne Hoel / World Bank)


Innovations in youth employment programs are critical to addressing this enormous development challenge effectively. Rapid progress in digital technology, behavioral economics, evaluation methods, and the connectivity of youth in the developing world generates a stream of real-time insights and opportunities in project design and implementation. Part of the challenge is the sheer number of projects (just in Egypt, there are over 180 youth employment programs). And even without being aware, projects often innovate out of necessity in response to situations they face on the ground. But innovations need to be tested in different country contexts to be able to make an impact at scale.

Through the new Solutions for Youth Employment (S4YE) report, our team ventured to curate a few such ongoing innovations as they were being implemented through S4YE’s Impact Portfolio — a group of 19 youth employment projects from different regions being implemented by  different partners across the globe. This network of youth employment practitioners serves as a dynamic learning community and laboratory for improving the jobs outcomes of youth globally.

Resilient transport investments: a climate imperative for Small Island Developing Countries

Franz Drees-Gross's picture


Transport in its many forms – from tuk-tuks in Thailand to futuristic self-driving electric cars – is ubiquitous in the lives of everyone on the planet. For that reason, it is often taken for granted – unless we are caught in congestion, or more dramatically, if the water truck fails to arrive at a drought-stricken community in Africa.

It is easy to forget that transport is a crucial part of the global economy. Overall, countries invest between $1.4 to $2.1 trillion per year in transport infrastructure to meet the world’s demand for mobility and connectivity. Efficient transport systems move goods and services, connect people to economic opportunities, and enable access to essential services like healthcare and education. Transport is a fundamental enabler to achieving almost all the Sustainable Development Goals (SDGs), and is crucial to meet the objectives under the Paris agreement of limiting global warming to less than 2°C by 2100, and make best efforts to limit warming to 1.5°C.

But all of this depends on well-functioning transport systems. With the effects of climate change, in many countries this assumption is becoming less of a given. The impact of extreme natural events on transport—itself a major contributor to greenhouse gas emissions—often serve as an abrupt reminder of how central it is, both for urgent response needs such as evacuating people and getting emergency services where they are needed, but also for longer term economic recovery, often impaired by destroyed infrastructure and lost livelihoods. A country that loses its transport infrastructure cannot respond effectively to climate change impacts.

Making homes safer to build resilient cities

Kristina Wienhoefer's picture

Children are often told that home is where to run inside when thunders hit or when the rain comes, and that home is a safe place. However, for billions of people in the world, it is not.
 
By 2030, it is estimated that 3 billion people will be at risk of losing a loved one or their homes—usually their most important assets—to natural disasters. In fact, the population living on flood plains or cyclone-prone coastlines is growing twice as faster as the population in safe homes in safer areas.
 
Due to climate change, extreme weather and other natural hazard events hit these populations harder and more often. The 10 natural disasters causing the most property damages and losses in history have occurred since 2005. The damages and losses were highly concentrated in the housing sector. While the poor experience 11% of total of asset losses, they suffer 47% of all the well-being losses. Worse, natural disasters can lead to unnecessary losses of life, with earthquakes alone causing 44,585 deaths on average per year. This is an issue that policymakers and mayors need to address if they don’t want their achievements in poverty reduction to be erased by the next hurricane or earthquake.

World Bank Group

How to protect metro systems against natural hazards? Countries look to Japan for answers

Sofía Guerrero Gámez's picture
Photo: Evan Blaser/Flickr
The concentration of population in cities and their exposure to seismic hazards constitute one of the greatest disaster risks facing Peru and Ecuador. In 2007, a magnitude 8.0 earthquake along the southern coast of Peru claimed the lives of 520 people and destroyed countless buildings. The most recent earthquake in Ecuador, in 2016, left more than 200 dead and many others injured.
 
Of course, these risks are not exclusive to Latin America. Considered one of the most earthquake-prone countries in the world, Japan has developed unparalleled experience in seismic resilience. The transport sector has been an integral part of the way the country manages earthquake risk— which makes perfect sense when you consider the potential consequences of a seismic event on transport infrastructure, operations, and passenger safety.

Fostering livable and prosperous cities: 4 steps that Peru should take

Zoe Elena Trohanis's picture
Vista del Metropolitano de noche. Lima. Perú.

When you think of Peru, the first city that usually comes to mind is Lima. Why? Well, because Lima is the largest city in the country, with close to 50% of the nation’s urban population living in the metropolitan area; the city also produces 45% of Peru’s GDP. While this level of concentration of population and economic activity may not be a good or bad thing, it points to some imbalances in the urban system in Peru. 

What can satellite imagery tell us about secondary cities? (Part 2/2)

Sarah Elizabeth Antos's picture
In the previous blog, we discussed how remote sensing techniques could be used to map and inform policymaking in secondary cities, with a practical application in 10 Central American cities. In this post, we dive deeper into the caveats and considerations when replicating these data and methods in their cities.

Can we rely only on satellite? How accurate are these results?

It is standard practice in classification studies (particularly academic ones) to assess accuracy from behind a computer. Analysts traditionally pick a random selection of points and visually inspect the classified output with the raw imagery. However, these maps are meant to be left in the hands of local governments, and not published in academic journals.

So, it’s important to learn how well the resulting maps reflect the reality on the ground.

Having used the algorithm to classify land cover in 10 secondary cities in Central America, we were determined to learn if the buildings identified by the algorithm were in fact ‘industrial’ or ‘residential’. So the team packed their bags for San Isidro, Costa Rica and Santa Ana, El Salvador.

Upon arrival, each city was divided up into 100x100 meter blocks. Focusing primarily on the built-up environment, roughly 50 of those blocks were picked for validation. The image below shows the city of San Isidro with a 2km buffer circling around its central business district. The black boxes represent the validation sites the team visited.
 
Land Cover validation: A sample of 100m blocks that were picked to visit in San Isidro, Costa Rica. At each site, the semi-automated land cover classification map was compared to what the team observed on the ground using laptops and the Waypoint mobile app (available for Android and iOS).

What can satellite imagery tell us about secondary cities? (Part 1/2)

Sarah Elizabeth Antos's picture

The buzz around satellite imagery over the past few years has grown increasingly loud. Google Earth, drones, and microsatellites have grabbed headlines and slashed price tags. Urban planners are increasingly turning to remotely sensed data to better understand their city.

But just because we now have access to a wealth of high resolution images of a city does not mean we suddenly have insight into how that city functions.

The question remains: How can we efficiently transform big data into valuable products that help urban planners?

In an effort a few years ago to map slums, the World Bank adopted an algorithm to create land cover classification layers in large African cities using very high resolution imagery (50cm). Building on the results and lessons learned, the team saw an opportunity in applying these methods to secondary cities in Latin America & the Caribbean (LAC), where data availability challenges were deep and urbanization pressures large. Several Latin American countries including Argentina, Bolivia, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, and Panama were faced with questions about the internal structure of secondary cities and had no data on hand to answer such questions.

A limited budget and a tight timeline pushed the team to assess the possibility of using lower resolution images compared to those that had been used for large African cities. Hence, the team embarked in the project to better understand the spatial layout of secondary cities by purchasing 1.5 meter SPOT6/7 imagery and using a semi-automated classification approach to determine what types of land cover could be successfully detected.

Originally developed by Graesser et al 2012 this approach trains (open source) algorithm to leverage both the spectral and texture elements of an image to identify such things as industrial parks, tightly packed small rooftops, vegetation, bare soil etc.

What do the maps look like? The figure below shows the results of a classification in Chinandega, Nicaragua. On the left hand side is the raw imagery and the resulting land cover map (i.e. classified layer) on the right. The land highlighted by purple shows the commercial and industrial buildings, while neighborhoods composed of smaller, possibly lower quality houses are shown in red, and neighborhoods with slightly larger more organized houses have been colored yellow. Lastly, vegetation is shown as green; bare soil, beige; and roads, gray.

Want to explore our maps? Download our data here. Click here for an interactive land cover map of La Ceiba.


Pages