Syndicate content

Sum4All

Motorization and its discontents

Roger Gorham's picture
Photo: Sarah Farat/World Bank
They say a picture is worth a thousand words.  While visiting the World Bank library the other day, I was struck by how many development publications featured pictures of motor vehicles on their covers, even though most of them covered topics that had little to do with transport.  The setting and tone of the pictures varied – sometimes they showed a lone car on a rural highway, sometimes congested vehicles in urban traffic, and sometimes a car displayed proudly as a status symbol – but the prevalence of motorized vehicles as a visual metaphor for development was unmistakable to me: in the public imagination, consciously or otherwise, many people associate development with more use of motorized vehicles.

Indeed, motorization – the process of adopting and using motor vehicles as a core part of economic and daily life – is closely linked with other dimensions of development such as urbanization and industrialization.

Motorization, however, is a double-edged sword.

For many households, being able to afford their own vehicle is often perceived as the key to accessing more jobs, more services, more opportunities—not to mention a status symbol. Likewise, vehicles can unlock possibilities for firms and individual entrepreneurs such as the young man from Uganda pictured on the right, proudly showing off his brand new boda boda (motorcycle taxi). 

But motorization also comes with a serious downside, in terms of challenges that many governments have difficulty managing.  Motor vehicles can undermine the livability of cities by cluttering up roads and open spaces—the scene of chaos and gridlock in the picture below, from Accra, is a telling example. In addition, vehicles create significant safety hazards for occupants and bystanders alike… in many developing countries, road deaths have effectively reached epidemic proportions. From an environmental standpoint, motorized transport is, of course, a major contributor to urban air pollution and greenhouse gas emissions. Lastly, motorization contributes to countries' hard currency challenges by exacerbating their long-term demand for petroleum products.

Given these challenges, how are developing countries going to align their motorization trajectories with their development goals?  What should the World Bank advise our clients about how to manage this process?

Sustainable mobility: can the world speak with one voice?

Nancy Vandycke's picture

 
The transport sector is changing at breakneck speed.
 
By 2030, global passenger traffic is set to rise by 50%, and freight volume by 70%. By 2050, we will have twice as many vehicles on the road, with most of the increase coming from emerging markets, where steady economic expansion is creating new lifestyle expectations and mobility aspirations. Mega-projects like China’s One Belt, One Road could connect more than half of the world’s population, and roughly a quarter of the goods that move around the globe by land and sea.
 
These transformations create a unique opportunity to improve the lives and livelihoods of billions of people by facilitating access to jobs, markets, and essential services such as healthcare or education.
 
But the growth of the transport sector could also come at the cost of higher fossil fuel use and greenhouse gas emissions, increasing air and noise pollution, a growing number of road fatalities, and worsening inequities in access.
 
Although these are, of course, global challenges, developing countries are disproportionately affected.
 
The vast majority of the one billion people who still don’t have access to an all-weather road live in the developing world. Although low and middle-income countries are home to only 54% of the world’s vehicles, they account for 90% of the 1.25 million road deaths occurring every year. If we don’t take action now, transport emissions from emerging markets could triple by 2050, and would make up 75% of the global total.
 
While the case for sustainable mobility is evident, the sector still lacks coherence and clear objectives. There is a way forward, but it requires pro-active cooperation between all stakeholders.
 
That’s what motivated the creation of Sustainable Mobility for All (SuM4All), a partnership between a wide range of global actors determined to speak with one voice and steer mobility in the right direction.
 
SuM4All partners include Multilateral Development Banks, United Nations Agencies, bilateral organizations, non-governmental organizations, civil society organizations, and is open to other important entities such as national governments and private companies. Together, these organizations can pool their capacity and experience to orient policymaking, turn ideas into action, and mobilize financing.

Climate is changing… So the way we manage roads needs to change as well

Chris Bennett's picture
Photo: Christopher R. Bennett/World Bank
Few things are more depressing than seeing the damage caused by cyclones on transport infrastructure. Especially when it is a causeway that was only formally opened less than one month before the storm. That is what I found in early 2014 when participating in the Tonga Cyclone Ian Post Disaster Needs Assessment. The cyclone was a typical example of the heavy toll that climate change is taking on transport infrastructure, particularly in the most vulnerable countries.

Engineers are taught that water is the greatest enemy of transport infrastructure, and unfortunately climate change is leading to an increase in floods and storms, especially within the South-East Asia region. For example, the figure below shows the number of floods and storms for some Asian countries between 2000 and 2008. The significant increase in the number of floods is self-evident.

Preparing transport for an uncertain climate future: I don’t have a crystal ball, but I have a computer

Julie Rozenberg's picture
Photo: Alex Wynter/Flickr
In 2015, severe floods washed away a series of bridges in Mozambique’s Nampula province, leaving several small villages completely isolated. Breslau, a local engineer and one of our counterparts, knew that rebuilding those bridges would take months. Breslau took his motorbike and drove the length of the river to look for other roads, trails, or paths to help the villagers avoid months of isolation. He eventually found an old earth path that was quickly cleaned up and restored… After a few days, the villagers had an alternative to the destroyed bridge, reconnecting them to the rest of the network and the country.

What happened in the Nampula province perfectly illustrates how a single weather event can quickly paralyze transport connections, bringing communities and economies to a screeching halt. There are many more examples of this phenomenon, which affects both developing and developed countries. On March 30th, a section of the I-85 interstate collapsed in Atlanta, causing schools to close and forcing many people to work from home. In Peru, food prices increase in Lima when the carretera central is disrupted by landslides because agricultural products can’t be brought to market.

How can we help countries improve the resilience of their transport networks in a context of scarce resources and rising climate uncertainty?

When cities forget about pedestrians, big data and technology can serve as a friendly reminder

Bianca Bianchi Alves's picture
Photo: Lazyllama/Shutterstock
Paraisópolis, a nationally famous slum area in São Paulo, Brazil, is one of those bustling communities where everything happens. Despite being located in the middle of the city, it managed, unlike other poor slum areas, not to be reallocated to make room for more expensive housing or public infrastructure. The area boasts vibrant community life, with more than 40 active NGOs covering issues that range from waste management and health to ballet and cooking. Recently, the area also benefited from several community upgrading programs. In particular, investments in local roads have facilitated truck access to the community, bringing in large and small retailers, and generating lively economic activity along with job opportunities for local residents.

As we continue our efforts to increase awareness around on-foot mobility (see previous blog), today, I would like to highlight a project we developed for Paraisópolis.

While most of the community has access to basic services and there are opportunities for professional enhancement and cultural activities, mobility and access to jobs remains a challenge. The current inequitable distribution of public space in the community prioritizes private cars versus transit and non-motorized transport. This contributes to severe congestion and reduced transit travel speed; buses had to be reallocated to neighboring streets because they were always stuck in traffic. Pedestrians are always at danger of being hit by a vehicle or falling on the barely-existent sidewalks, and emergency vehicles have no chance of getting into the community if needed. For example, in the last year there were three fire events—a common hazard in such communities—affecting hundreds of homes, yet the emergency trucks could not come in to respond on time because of cars blocking the passage.

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Traffic jams, pollution, road crashes: Can technology end the woes of urban transport?

Shomik Mehndiratta's picture
Photo: Noeltock/Flickr
Will technology be the savior of urban mobility?
 
Urbanization and rising incomes have been driving rapid motorization across Asia, Africa, and Latin America. While cities are currently home to 50% of the global population, that proportion is expected to increase to 70% by 2050. At the same time, business-as-usual trends suggest we could see an additional 1 billon cars by 2050, most of which will have to squeeze into the already crowded streets of Indian, Chinese, and African cities.
 
If no action is taken, these cars threaten literally to choke tomorrow’s cities, bringing with them a host of negative consequences that would seriously undermine the overall benefits of urbanization: lowered productivity from constant congestion; local pollution and rising carbon emissions; road traffic deaths and injuries; rising inequity and social division.
 
However, after a century of relatively small incremental progress, disruptive changes in the world of automotive technology could have fundamental implications for sustainability.
 
What are these megatrends, and how can they reshape the future of urban mobility?

Getting a global initiative off the ground: What can transport learn from energy?

Nancy Vandycke's picture

In May last year, key stakeholders joined the World Bank Group in calling for global and more concerted action to address the climate impact of transport while ensuring mobility for everyone. More recently, the Secretary-General’s High-Level Advisory Group on Sustainable Transport noted, in its final recommendations to Ban Ki-Moon, emphasized the need for “coalitions or partnership networks” to “strengthen coherence” for scaling up sustainable transport, as well as establishing monitoring and evaluation frameworks. These issues have been raised at Habitat III, COP22 and at the Global Sustainable Transport Conference in Ashgabat.
 
As the global community readies itself to move from commitments to implementation, what can transport learn from similar initiatives in other sectors, such as Sustainable Energy for All (SE4All)?

Follow the moving carbon: A strategy to mitigate emissions from transport

Shomik Mehndiratta's picture


To learn more about the future of sustainable mobility, don't miss Transforming Transportation 2017 on January 12-13. Click here to watch the event live and submit your questions to our experts.

 
Transport currently accounts for 23% of energy-related carbon emissions--equivalent to 7.3 gigatons of CO2 globally in 2013—and, unfortunately, ranks among the fastest growing sources of such emissions.

If we’re serious about bucking the trend and reducing the environmental footprint of the sector, we first need to understand where transport emissions come from, and how they will evolve. If you take out the 1 GT of CO2 emissions released by the aviation and maritime industry for international transport, about 6 GT of transport emissions are classified as “domestically generated.” Today, the share of domestically generated emissions is split pretty much evenly between developed and developing countries: high-income OECD countries account for about 3 GT, while non-OECD countries are responsible for another 3 GT.

However, under a business-as-usual scenario, this breakdown is expected to change dramatically. Without bold action to make transport greener, emissions from emerging markets are poised to grow threefold by 2050, and would then make some 75% of the global total. Domestically generated emissions from OECD countries, in comparison, should rise by a more modest 17%.

The share of each mode in overall transport emissions also differs depending on which part of the world you’re looking at: while 2/3 of emissions in OECD countries are from cars, freight and particularly trucking is currently more important in the context of emerging markets.  Trucks actually generate over 40% of transport emissions in China, India Latin America and Africa.