Syndicate content

sustainable transport

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Climate change is forcing us to reinvent rural transport for the better

Ashok Kumar's picture
Photo: Ravisankar Pandian/Flickr
India is in the midst of implementing PMGSY, a $35-billion national level Rural Road Program designed to provide basic road access to rural communities. The World Bank is supporting PMGSY through a series of lending operations ($1.8 billion in Bank funding) and significant knowledge support. A key element of the Bank’s support has been to integrate a “climate and green growth lens” into these efforts in cost-effective ways.

How is “green growth” benefiting India? One important dimension of that effort has been  the use of environmentally optimized road designs, which has resulted in quality infrastructure using local and marginal materials, providing both economic and environmental benefits. Where available, sand deposits accumulated from frequent floods, industrial by-products, and certain types of plastic, mining, and construction waste have been used to good effect. Designs that use such materials have been about 25% cheaper to build, on average, than those requiring commonly used rock aggregates. The environmental benefits of using the above materials, in terms of addressing the big disposal problem of such materials and reducing the consumption of scarce natural stone aggregates, are as significant as the cost savings.

A second “green growth” dimension has been focusing investments on the “core” network, i.e. the network India needs to develop in order to provide access to all villages. Relative to a total rural road network of about 3.3 million kilometers, the core network that falls under PMGSY stretches over only 1.1 million kilometers. Prioritizing construction and maintenance on those critical road links will bring down costs as well as the associated carbon footprint.

Is it too early to agree on SDG indicators for transport?

Muneeza Mehmood Alam's picture

 
In March, the international community of statisticians will gather in New York and Ottawa to discuss and agree on a global indicator framework for the 17 Sustainable Development Goals and the 169 targets of the “2030 Agenda for Sustainable Development”. The task at hand is ambitious. In 2015, heads of state from around the world committed to do nothing less than “transform our world”. Monitoring progress towards this ambition is essential, but technically and politically challenging: it will require endorsement from all UN Member States on how to measure progress. In March, it will be the second attempt at getting this endorsement.

Why is it important? “What gets measured, gets done”. Measuring progress is essential for transparency and accountability. It allows us to understand our accomplishments and failures along the way, and identify corrective measures and actions—in short, it allows us to get things done.

What is the issue? Politically, the SDG process has been country led. This means that countries—and not international agencies, as in the case of the Millennium Development Goals—have guided the whole SDG process, including leading discussions and the selection of goals, targets and indicators.   Technically, the development of a robust and high-quality indicator framework is highly complex: the indicator should align closely with each target, have an agreed-upon methodology, and have global coverage. In reality, many indicators do not. For example, the indicator proposed to measure the 11.2 SDG target (“By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all”) is the “proportion of population that has convenient access to public transport”. Data is not yet available for this indicator. Additional indicators may be needed to cover all aspects of the target.

Traffic jams, pollution, road crashes: Can technology end the woes of urban transport?

Shomik Mehndiratta's picture
Photo: Noeltock/Flickr
Will technology be the savior of urban mobility?
 
Urbanization and rising incomes have been driving rapid motorization across Asia, Africa, and Latin America. While cities are currently home to 50% of the global population, that proportion is expected to increase to 70% by 2050. At the same time, business-as-usual trends suggest we could see an additional 1 billon cars by 2050, most of which will have to squeeze into the already crowded streets of Indian, Chinese, and African cities.
 
If no action is taken, these cars threaten literally to choke tomorrow’s cities, bringing with them a host of negative consequences that would seriously undermine the overall benefits of urbanization: lowered productivity from constant congestion; local pollution and rising carbon emissions; road traffic deaths and injuries; rising inequity and social division.
 
However, after a century of relatively small incremental progress, disruptive changes in the world of automotive technology could have fundamental implications for sustainability.
 
What are these megatrends, and how can they reshape the future of urban mobility?

Getting a global initiative off the ground: What can transport learn from energy?

Nancy Vandycke's picture

In May last year, key stakeholders joined the World Bank Group in calling for global and more concerted action to address the climate impact of transport while ensuring mobility for everyone. More recently, the Secretary-General’s High-Level Advisory Group on Sustainable Transport noted, in its final recommendations to Ban Ki-Moon, emphasized the need for “coalitions or partnership networks” to “strengthen coherence” for scaling up sustainable transport, as well as establishing monitoring and evaluation frameworks. These issues have been raised at Habitat III, COP22 and at the Global Sustainable Transport Conference in Ashgabat.
 
As the global community readies itself to move from commitments to implementation, what can transport learn from similar initiatives in other sectors, such as Sustainable Energy for All (SE4All)?

Transforming Transportation: Toward Sustainable Mobility for All

Jose Luis Irigoyen's picture


To learn more about the future of sustainable mobility, don't miss Transforming Transportation 2017 on January 12-13. Click here to watch the event live and submit your questions to our experts.

 
From taxi apps to car sharing, from buses to the metro, from bike sharing to walking, not to mention personal cars, there are more transportation choices than ever before for that staple of modern life: the daily commute. The same goes for the transport of goods, which can get from A to B by road, air, rail, waterways and soon drones. There are currently more than 12,600 km (nearly 8000 miles) of metro or urban rail and 5,400 km (3,300 miles) of bus rapid transit (BRT), collectively providing 154 million trips a day in 250 cities. Increased access to transport and enhanced connectivity decreases travel time and generates higher rates of direct employment, keys to elevating overall economic opportunity. 

That’s the good news. The bad news is that the increase in mobility options comes at a high price. The challenges associated with growing traffic, especially in cities, are significant and threaten to become insurmountable. And despite the wide range of ways to get around, there have never been so many people who lack access to transportation or the means to use transportation.

Follow the moving carbon: A strategy to mitigate emissions from transport

Shomik Mehndiratta's picture


To learn more about the future of sustainable mobility, don't miss Transforming Transportation 2017 on January 12-13. Click here to watch the event live and submit your questions to our experts.

 
Transport currently accounts for 23% of energy-related carbon emissions--equivalent to 7.3 gigatons of CO2 globally in 2013—and, unfortunately, ranks among the fastest growing sources of such emissions.

If we’re serious about bucking the trend and reducing the environmental footprint of the sector, we first need to understand where transport emissions come from, and how they will evolve. If you take out the 1 GT of CO2 emissions released by the aviation and maritime industry for international transport, about 6 GT of transport emissions are classified as “domestically generated.” Today, the share of domestically generated emissions is split pretty much evenly between developed and developing countries: high-income OECD countries account for about 3 GT, while non-OECD countries are responsible for another 3 GT.

However, under a business-as-usual scenario, this breakdown is expected to change dramatically. Without bold action to make transport greener, emissions from emerging markets are poised to grow threefold by 2050, and would then make some 75% of the global total. Domestically generated emissions from OECD countries, in comparison, should rise by a more modest 17%.

The share of each mode in overall transport emissions also differs depending on which part of the world you’re looking at: while 2/3 of emissions in OECD countries are from cars, freight and particularly trucking is currently more important in the context of emerging markets.  Trucks actually generate over 40% of transport emissions in China, India Latin America and Africa.

Visiting Ecuador’s very first metro

Sameh Wahba's picture
It’s easy for me to take public transport for granted: a mere 5 minutes’ walk from my office at the World Bank Headquarters, I have access to 2 metro stations served by 4 different lines that offer easy connections to many parts of the Washington DC area. There is a sense of comfort in knowing that, despite the occasional hiccups that we all love to complain about, metro provides a safe and reliable way for me to commute to work every day.
 
In Quito, Ecuador, many people don’t have that luxury. Granted, there is the notable Bus Rapid Transit (BRT) that operates high-frequency services on dedicated lanes and has significantly reduced travel time. But the system is already crowded, and has exceeded its capacity: during peak hours, each bus carries an average 175 passengers, well above the 165 maximum capacity leading to overcrowding due to a huge flow of passengers.
 
According to 2010 figures, Ecuadorians owned 71 vehicles per 1,000 inhabitants, significantly higher than countries like Bolivia, Nicaragua, Egypt, and Angola, which were respectively at 68, 57, 45, and 31 vehicles per 1,000 inhabitants. In 2010, the government introduced Road Space Rationing, a plan that aims to reduce traffic by limiting the number of vehicles on the road within a certain area based on license plate numbers. These are great initiatives, but more is needed in view of how fast Quito is growing.

First-ever Global Conference on Sustainable Transport: What is at stake?

Nancy Vandycke's picture

On November 26, 2016, UN Secretary-General Ban-Ki Moon will convene the first-ever Global Conference on Sustainable Transport, in Ashgabat, Turkmenistan. What is at stake in this capstone two-day event? What fresh developments might it yield, and how might it change the dynamics for transport?
 
The new transport agenda. A number of earlier high-level events—including the UN Climate Action Summit, the OECD/International Transport Forum, and the Habitat III Conference—helped give a long-needed boost to the visibility of transport in the international arena in 2016. The events also helped position transport within the current set of global commitments that include the Sustainable Development Goals, the Paris climate agreement, the Decade of Action on Road Safety, and the Habitat III New Urban Agenda. The forthcoming Ashgabat event will put front and center one simple notion: for the next 15 years, the transport agenda will be framed by that set of global commitments. The commitments define the space within which governments, international organizations, the private sector, and civil society will have to act on transport. And they will dictate the future size and direction of transport funding.
 
This is a paradigm shift. Previously, the transport agenda was defined by the goal of providing access to transport infrastructure. Under the new framework, the international community has committed itself to much more. First, the issue is no longer simply access but equitable access for all. Second, other, equally important objectives have been added, including the efficiency and reliability of mobility services, transport safety, and decarbonization. In sum, the internationally accepted transport agenda concerns more than economic and social development; it is also about being part of the climate change solution.

Rio: A hot city tackles global warming through mass transit

Daniel Pulido's picture
SuperVia, Rio de Janeiro / 2.0 Brasil

It is the end of another hot day in Rio de Janeiro. I’m tired and sweaty after spending the afternoon checking out the progress on some of the city’s train stations, which are being renovated for the upcoming Olympic Games. But I’m also happy, having witnessed the progress made in improving Rio’s suburban rail system, known as SuperVia, which the World Bank has been supporting for the last 20 years.

Pages