Syndicate content

Transport

Preparing for the future of logistics - the Singapore way

Yin Yin Lam's picture
Photo: Sarah Starkweather/Flickr
The government of Singapore recently outlined its vision for the country's future, describing how different sectors could harness technology, innovation and mega-trends in order to take the city-state to the next level. This approach includes a dedicated Industry Transformation Map for the logistics sector, which accounts for 7.7% of Singapore's GDP and over 8% of jobs. Logistics is also understood as a crucial enabler for other significant parts of the economy, such as manufacturing and trade.

How is Singapore anticipating the transformation of logistics?

Singapore has been considered a major logistics hub for quite some time, and is currently ranked first in Asia according to the Word Bank’s Logistics Performance Index. The sector, however, is experiencing significant transformations such as the rise of digitally enabled logistics services, and the emergence of new delivery capabilities (autonomous vehicles, 3D printing).

The Industry Transformation Map (ITM) will help Singaporean logistics keep its competitive edge in this rapidly evolving context, and aims to achieve a value-added of S$8.3billion (US$6 billion) by 2020. In particular, the ITM intends to strengthen innovation, productivity, as well as talent development across the logistics sector—including by leveraging trends such as artificial intelligence and collaborative robotics.

Women on the march! Two decades of gender inclusion in rural roads in Peru

Ramon Munoz-Raskin's picture
Also available in: Español
 
 
Women maintaining roads? As their job? Until recently, the idea was pretty much unfathomable in many countries. But in Peru, it isn’t. Since 2001, the Peruvian government and the World Bank have been working hand in hand to ensure female workers can play an active role in the routine maintenance of rural roads. This is part of a broader effort to reduce the gender gap in rural areas, and to improve women’s access to social and economic opportunities.

Over the last two decades, a series of ambitious projects have allowed the rehabilitation 30,000 km of rural roads, and supported maintenance activities along 50,000 km. This type of large-scale road projects has created significant economic and employment opportunities for local communities, and this is why we wanted to make sure women could get their share. To make this happen, we organized trainings, developed specific programs that would improve women’s access to resources, and worked to eliminate the barriers that disadvantaged women (e.g. requirements related to literacy or previous construction experience). The result? In 2013, female participation in rural road maintenance microenterprises reached 27% during the Peru Decentralized Rural Transport Project.

Motorization and its discontents

Roger Gorham's picture
Photo: Sarah Farat/World Bank
They say a picture is worth a thousand words.  While visiting the World Bank library the other day, I was struck by how many development publications featured pictures of motor vehicles on their covers, even though most of them covered topics that had little to do with transport.  The setting and tone of the pictures varied – sometimes they showed a lone car on a rural highway, sometimes congested vehicles in urban traffic, and sometimes a car displayed proudly as a status symbol – but the prevalence of motorized vehicles as a visual metaphor for development was unmistakable to me: in the public imagination, consciously or otherwise, many people associate development with more use of motorized vehicles.

Indeed, motorization – the process of adopting and using motor vehicles as a core part of economic and daily life – is closely linked with other dimensions of development such as urbanization and industrialization.

Motorization, however, is a double-edged sword.

For many households, being able to afford their own vehicle is often perceived as the key to accessing more jobs, more services, more opportunities—not to mention a status symbol. Likewise, vehicles can unlock possibilities for firms and individual entrepreneurs such as the young man from Uganda pictured on the right, proudly showing off his brand new boda boda (motorcycle taxi). 

But motorization also comes with a serious downside, in terms of challenges that many governments have difficulty managing.  Motor vehicles can undermine the livability of cities by cluttering up roads and open spaces—the scene of chaos and gridlock in the picture below, from Accra, is a telling example. In addition, vehicles create significant safety hazards for occupants and bystanders alike… in many developing countries, road deaths have effectively reached epidemic proportions. From an environmental standpoint, motorized transport is, of course, a major contributor to urban air pollution and greenhouse gas emissions. Lastly, motorization contributes to countries' hard currency challenges by exacerbating their long-term demand for petroleum products.

Given these challenges, how are developing countries going to align their motorization trajectories with their development goals?  What should the World Bank advise our clients about how to manage this process?

Sustainable mobility: can the world speak with one voice?

Nancy Vandycke's picture

 
The transport sector is changing at breakneck speed.
 
By 2030, global passenger traffic is set to rise by 50%, and freight volume by 70%. By 2050, we will have twice as many vehicles on the road, with most of the increase coming from emerging markets, where steady economic expansion is creating new lifestyle expectations and mobility aspirations. Mega-projects like China’s One Belt, One Road could connect more than half of the world’s population, and roughly a quarter of the goods that move around the globe by land and sea.
 
These transformations create a unique opportunity to improve the lives and livelihoods of billions of people by facilitating access to jobs, markets, and essential services such as healthcare or education.
 
But the growth of the transport sector could also come at the cost of higher fossil fuel use and greenhouse gas emissions, increasing air and noise pollution, a growing number of road fatalities, and worsening inequities in access.
 
Although these are, of course, global challenges, developing countries are disproportionately affected.
 
The vast majority of the one billion people who still don’t have access to an all-weather road live in the developing world. Although low and middle-income countries are home to only 54% of the world’s vehicles, they account for 90% of the 1.25 million road deaths occurring every year. If we don’t take action now, transport emissions from emerging markets could triple by 2050, and would make up 75% of the global total.
 
While the case for sustainable mobility is evident, the sector still lacks coherence and clear objectives. There is a way forward, but it requires pro-active cooperation between all stakeholders.
 
That’s what motivated the creation of Sustainable Mobility for All (SuM4All), a partnership between a wide range of global actors determined to speak with one voice and steer mobility in the right direction.
 
SuM4All partners include Multilateral Development Banks, United Nations Agencies, bilateral organizations, non-governmental organizations, civil society organizations, and is open to other important entities such as national governments and private companies. Together, these organizations can pool their capacity and experience to orient policymaking, turn ideas into action, and mobilize financing.

Climate is changing… So the way we manage roads needs to change as well

Chris Bennett's picture
Photo: Christopher R. Bennett/World Bank
Few things are more depressing than seeing the damage caused by cyclones on transport infrastructure. Especially when it is a causeway that was only formally opened less than one month before the storm. That is what I found in early 2014 when participating in the Tonga Cyclone Ian Post Disaster Needs Assessment. The cyclone was a typical example of the heavy toll that climate change is taking on transport infrastructure, particularly in the most vulnerable countries.

Engineers are taught that water is the greatest enemy of transport infrastructure, and unfortunately climate change is leading to an increase in floods and storms, especially within the South-East Asia region. For example, the figure below shows the number of floods and storms for some Asian countries between 2000 and 2008. The significant increase in the number of floods is self-evident.

Preparing transport for an uncertain climate future: I don’t have a crystal ball, but I have a computer

Julie Rozenberg's picture
Photo: Alex Wynter/Flickr
In 2015, severe floods washed away a series of bridges in Mozambique’s Nampula province, leaving several small villages completely isolated. Breslau, a local engineer and one of our counterparts, knew that rebuilding those bridges would take months. Breslau took his motorbike and drove the length of the river to look for other roads, trails, or paths to help the villagers avoid months of isolation. He eventually found an old earth path that was quickly cleaned up and restored… After a few days, the villagers had an alternative to the destroyed bridge, reconnecting them to the rest of the network and the country.

What happened in the Nampula province perfectly illustrates how a single weather event can quickly paralyze transport connections, bringing communities and economies to a screeching halt. There are many more examples of this phenomenon, which affects both developing and developed countries. On March 30th, a section of the I-85 interstate collapsed in Atlanta, causing schools to close and forcing many people to work from home. In Peru, food prices increase in Lima when the carretera central is disrupted by landslides because agricultural products can’t be brought to market.

How can we help countries improve the resilience of their transport networks in a context of scarce resources and rising climate uncertainty?

When cities forget about pedestrians, big data and technology can serve as a friendly reminder

Bianca Bianchi Alves's picture
Photo: Lazyllama/Shutterstock
Paraisópolis, a nationally famous slum area in São Paulo, Brazil, is one of those bustling communities where everything happens. Despite being located in the middle of the city, it managed, unlike other poor slum areas, not to be reallocated to make room for more expensive housing or public infrastructure. The area boasts vibrant community life, with more than 40 active NGOs covering issues that range from waste management and health to ballet and cooking. Recently, the area also benefited from several community upgrading programs. In particular, investments in local roads have facilitated truck access to the community, bringing in large and small retailers, and generating lively economic activity along with job opportunities for local residents.

As we continue our efforts to increase awareness around on-foot mobility (see previous blog), today, I would like to highlight a project we developed for Paraisópolis.

While most of the community has access to basic services and there are opportunities for professional enhancement and cultural activities, mobility and access to jobs remains a challenge. The current inequitable distribution of public space in the community prioritizes private cars versus transit and non-motorized transport. This contributes to severe congestion and reduced transit travel speed; buses had to be reallocated to neighboring streets because they were always stuck in traffic. Pedestrians are always at danger of being hit by a vehicle or falling on the barely-existent sidewalks, and emergency vehicles have no chance of getting into the community if needed. For example, in the last year there were three fire events—a common hazard in such communities—affecting hundreds of homes, yet the emergency trucks could not come in to respond on time because of cars blocking the passage.

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Beyond ribbon-cutting: measuring the real impact of transport projects

Nancy Vandycke's picture
Photo: World Bank/Flickr
Development practitioners often rely on Monitoring and Evaluation (M&E) performance indicators to assess the results of a transport project. Collecting indicators before, during, and after a project allows us to gain insights about project execution and project outputs, which can help us, for example, measure changes in travel time or Bus Rapid Transit (BRT) system ridership. While this approach is important, well anchored into project design, and quite practical, it is not intended to evaluate “impact”. Observed changes in outcomes cannot be attributed to the project: many other external factors, such as economic conditions, interrelated policies or projects, or seasonal trends, also come into play. In other words, a descriptive approach fails to establish causality between a project or intervention and subsequent outcomes such as changes in income, labor markets, quality of life, or market efficiency.

To overcome the limitations of traditional M&E, the development community is increasingly turning to impact evaluation, an alternative approach whose methods more directly address the issue of causality. In that context, the World Bank’s transport experts have partnered with colleagues from the Development Impact Evaluation (DIME) team to rethink the way the impact of transport is measured. Two years ago, with support from the UK Department for International Development (DFID), a transport-dedicated impact evaluation program was launched: “IE Connect for Impact”. Now, impact evaluation is being implemented on 10 projects, covering rural roads, urban mobility, transport corridor development, and road safety. More projects will be selected toward the end of the year, as part of Phase II of the program.

The expected benefits are clear: informing project delivery during design and implementation, documenting the effects of policy and investment interventions, and prioritizing and filling knowledge gaps in the sector. Despite these significant benefits, transport accounts for less than 1% of all impact evaluation work —a very low proportion compared to the weight of other sectors such as in health (65% of all published impact evaluations), education (23%), agriculture and rural development (10%), or water (4%).

Are roads and highways the Achilles Heel of Brazil?

Frederico Pedroso's picture
Also available in: Português
Photo: Ricardo Giaviti/Flickr
Over the past three years and a half, our team has been working on a transport project with the state of São Paulo in Brazil. The project involves a lot of traveling, including frequent commutes between the World Bank office in Brasilia and the State Department of Transport in São Paulo (DER-SP)—a journey that is estimated to take 2 hours and 40 minutes. This includes the time to drive from the World Bank office to Brasilia Airport, flight time, and commuting from São Paulo’s Congonhas Airport to the State Department of Transport.
 
Let’s say that, on a typical Wednesday, the team needs to attend a meeting in São Paulo. To ensure we can make it on time, we plan our day carefully, book our flights and define the right time to leave the office in Brasilia. With a plan in place, we leave the office at 10:00 am and head to Brasilia Airport. The first leg of the trip takes 35 minutes and we manage to arrive early for our 11:00 am flight, which, unfortunately, is delayed by 20 minutes. We land in São Paulo, quickly get out of the terminal, and manage to hop on a taxi at 1:20pm… not bad! We are now on the last leg of our journey, a mere 14-kilometer drive between Congonhas Airport and the meeting place, which is supposed to take only 20 minutes. However, there is a short thunderstorm that floods the city and closes off key streets. This single event leads to complete traffic chaos along the way, and our planned 20-minute transfer from the airport turns into a 1-hour-and-15-minute ordeal. These traffic disruptions have a serious impact on our meeting as well, as some Department of Transport staff cannot join and some items of the agenda cannot be discussed.
 
This incident may seem anecdotal, but it is a good illustration of our extreme dependency on transport systems and the weaknesses associated with it. Because transport is so critical to our social and economic lives, it is extremely important to understand, anticipate, and minimize the different types of risks that may impact transport systems.

Pages