In China, Innovation in Water Rights Leads to Real Water Savings


This page in:

Also available in: 中文

China’s most arid regions are facing an increasingly serious water crisis, and local water policies often aggravate the problem. In such climates, growth in the agricultural sector has come with high environmental costs.

With the help of new technologies that measure real water consumption in agriculture, governments are designing innovative water rights systems that actually save water. Based on results from two successful pilots, the World Bank Group is partnering with China to tap into science to transform water management in agriculture at the national level.

Conserving Water in China’s Hottest and Driest Place

The latest pilot supports the Turpan Prefecture in China’s Xinjiang Uygur Autonomous region, which is one of the country’s most water-stressed (annual evaporation is 200 times higher than annual precipitation) and poorest regions.
Despite the parched climate, irrigated agriculture, which is the largest water user, continues to expand. The area under irrigation increased nearly two-fold between 1970 and 2008, from 60,000 ha to 113, 000 ha. During that same time, groundwater tables in Turpan dropped by 1.5 to 2 meters per year causing a series of environmental problems, such as degradation of ecological oases and loss of cultural heritage water supply systems.
Overexploitation of groundwater was partly because of the quota-based water rights system in Turpan, based on “use it or lose it” principles. Farmers had incentives to consume as much water as they were entitled to. Even with the use of more efficient irrigation technologies, any water that was “saved” was used to develop more land, not returned to the soil, groundwater, or nearby lakes and streams.
More land under irrigation uses more water, and not just the crops. Plants consume water through a process called transpiration, which together with evaporation from water bodies can be measured as evapo-transpiration (ET) – all the water that goes from the land surface into the air. The portion of water lost to ET can be even higher than the amount used to grow the crops. For example, in China’s Hai Basin, 98% of water is consumed by ET processes.
Water allocation policies that account for ET are especially important in dry climates. To help local authorities in the Turpan Basin implement an ET-based water rights system, the World Bank‘s Water Partnership Program (WPP) piloted the implementation of an innovative ET-based Water Rights Administration System (WRAS) in the Turpan Prefecture on a small scale.
This system applied remote sensing technologies for measuring and monitoring ET via satellite data. The new measurements were used to develop consumption targets, which, together with basin-wide development plans, formed the basis of water allocation decisions. The system sets the maximum amount of water that can be used for economic activities without damaging the ecological environment and without groundwater overdraft.
The new ET-based WRAS is ready for implementation in the larger basin-wide area through the Xinjiang Turpan Water Conservation Project. The system will build upon the existing legal and administrative water rights system but will incorporate allocation, reallocation, transfer, and supervision to meet water consumed by ET and other economic and ecological uses. The project also replicates lessons from the World Bank’s Water Conservation Project in the Hai Basin (2000-2006), through which farmers’ annual per capita income increased by 193% and water productivity by 82%, while consumptive use or ET decreased by 27%.
Advances in remote sensing data for real-time, low-cost ET measurements has provided the data needed to assess tradeoffs and make critical decisions about the best use of limited resources. The World Bank Group has also made efforts to share these experiences with other countries, such as Brazil, Chile and Peru in Latin America; and Egypt, Jordan, Lebanon, Morocco, and Yemen in MENA that face similar challenges in maximizing agricultural production while looking at more sustainable, and more integrated water management in extremely water-scarce areas.


Liping Jiang

Senior Irrigation Engineer

Join the Conversation

Mr.Min Hein Htike
June 15, 2014

please,more information about asia river basins

Len Grout
June 06, 2014

The water cycle reveals evaporative transpiration is not a problem. What is a problem is water not getting to the right places when we want it and how we want it. We will always have water. Waste water such as grey and black water is treated, naturally using septic systems or mechanically and chemically using commercial systems, this water is then recycled as part of the water cycle back into ground water and river systems. The solution is to focus on agricultural water quality, water treatment and water consumption per capita

Alvin Smucker
January 15, 2016

Scientists and engineers at Michigan State University have developed a 2015 MSU Innovation Technology Award for the soil water technology (SWRT) for providing plant resilience to drought and major changes in climates by maintaining more soil water and nutrients in the root zone of plants. This rapidly expanding SWRT is being tested in the Western provinces of China, Eastern Turkey, Central Iraq, Northern Iran and four states across the USA. Grain and vegetable food production increases from 44 to 230%, require less water and fertilizers because nearly 100% of these "resilience nutrients" can be retained in the root zone, at optimum levels, for longer periods of time. SWRT re-designs marginal soils for maximum food production in the smallest gardens to the largest fields. SWRT is a long-term, 50 to 200 year, solution for meeting the additional food required by at least 10 billion by expanding agricultural production on many of the millions of hectares of marginal soils across the globe.

Francesca Egli
April 28, 2019

Water needs to be managed wisely and efficiently. It is vital for life and a human right and everybody, unprejudicedly, has the right to have it. In my opinion, this article showcases a good example of intelligent efforts to find ways of using a natural and limited resource properly by using technology and developing an smart method of allocation. Trying to support the natural water cycle, which cannot and should not be interrupted, is a clever and sustainable way of facing the lack of water issue. Countries like Chile should follow these kind of initiatives to reduce water consumption. Special attention should be given to trying to increase the productivity of agricultural land, in order to count with more food using less amount of water. Furthermore, it is admirable to see how China includes concrete data to know how much water they have to dedicate to the agriculture. This should be applied in countries where water is scarce. As a conclusion I can say, that water needs to be well used. That's why it is necessary to do as much as possible to reduce water problems. Following examples like China can be very effective. I hope these water problems will be overcome in the following years.